Etherons as predicted by Ioan-Iovitz Popescu in 1982

Original paper
Etherons as predicted by
Ioan-Iovitz Popescu
in 1982

edited by

Egbert K. Duursma
May 2015
This document is subject to copyright. All rights reserved, whether the whole or part of the material and subject concerned, specifically the rights of translation, reprinting, reciting, broadcasting, reproduction on Internet and production of TV series and films.

Adresses:

Acad. Prof. Ioan-Iovitz Popescu
Strada Fizicienilor 6 (new number 14), Bl. M4, Apt. 6
Magurele, Ilfov 077125
Romania
iovitzu@gmail.com

Prof. Egbert K. Duursma
302 av du semaphore
06190 Roquebrune Cap Martin
France
duursma@orange.fr
CONTENT

- INTRODUCTION
- CAREER OF IOAN-IOVITZ POPEȘCU
- PRINCIPLES OF DISCOVERY OF ETHERONS
- ENGLISH ABSTRACT OF THE 1982 PUBLICATION ON ETHERONS
- ETHERONICA — O POSIBILĂ RECONSIDERARE A CONCEPTULUI DE ETER (in Romanian, 1982)
- REMARKS OF THE EDITOR
There are many researchers, who search. There are few of them who find. Charles de Gaulle

INTRODUCTION
Egbert K. Duursma

However, scientists who find are not always awarded. This counts also for Prof. Ioan-Iovitz Popescu, who predicted in 1982 the smallest particles in our ether, the so-called etherons. They amount in number to about 10^{122} in the Universe and are of a size of 10^{-35} m and a weight of 10^{-69} kg.

This booklet presents the original copy of that historic 1982 document in Romanian language. Naturally this document, written in one of the tightest communistic countries, was not accepted at its desired level by the mainly Anglo-Saxon world of physical sciences.
The first confirmation of the etheron came in the article of N. Ionescu-Pallas1 at page 15: «We point out that the term “etheron”, and the previous formula of mass were, for the first time, proposed by the Romanian physicist Ioan-lovitzu Popescu, long time ago, when the compliance between the ether concept and the General Relativity Theory was by no means evident. By this remarkable intuition, lovitzu Popescu turns out to be a forerunner of the kind of gravitational theory we enter upon in this scientific work.»

In order to understand the contents of this document, it is preceded by an overview of the career of Prof. Popescu, of an introduction on the basic principles of used physics, and the English abstract of the original Romanian article.

As editor, I will give some remarks, which have a relation with a recent booklet also published by CreateSpace in which possible physical phenomena are related to the existence of etherons.

1 Reflections Concerning the Genuine Origin of Gravitation, Romanian Reports in Physics, 55, 7-42 (2003), see at http://rrp.infim.ro/2003_55_1/d00_pallas.pdf.
CAREER OF IOAN-IOVITZ POPESCU (NICKNAME IOVITZU)
By courtesy of George Dinesco.
Born 1 October 1932, Burila Mare, the district of Mehedintzi, Romania, physicist. Corresponding Member (1 March 1974) and Full Member (22 January 1990) of the Romanian Academy; President of the Physics Section of the Romanian Academy (1990–1992).

He attended the elementary school between the years 1939 and 1943, after which he graduated from the high school “Traian” in Drobeta – Turnu Severin in the year 1951. Between the years 1951 and 1955, he was a student of the Faculty of Physics of the University of Bucharest. In 1961, he received his Doctoral degree in physics, for the Ph.D. Thesis On the Mechanism of Cathodic Parts of Glow Discharges, under the guidance of Academician Eugen Badareu.
In the Gas Discharge and Optics Laboratory of the Physics Faculty of the Bucharest University (1960), from right to left: assistant Lovitzu, Professor Badareu and assistant Popovici.
Iovitzu in the Plasma Laboratory, Institute of Physics at Bucharest of the Romanian Academy (1963)

He continued his studies as a Post-Doctoral student, recipient of an Alexander von Humboldt Dozenten Stipendium at the Institut für Experimentalphysik der Universität Kiel, Germany (1967-1969). He began his scientific and academic career as Assistant for optics and gaseous electronics, Faculty of Physics of the University of Bucharest (1955-1960), later on as scientific researcher (1960-1972) at the Institute of Physics at Bucharest.
Ioovitzu and Denisa Popescu fixing a tunable dye laser, 1974, at the Institute of Physics and Radiation Technology at Magurele (near Bucharest)

Beginning with the year 1972, he became Professor of plasma physics, and then of optics, at the Faculty of Physics, the University of Bucharest - position which he kept till 1990. During that interval he was Dean of the Faculty of Physics of the University of Bucharest (1972-1977), the first Director of the Institute of Physics and Radiation Technology with the Institute for Atomic Physics (1977-1981), and Rector of the University of Bucharest (1981-1989). Since the year 1969, he has supervised 47 PhD's in Plasma Physics.
Ioavitzu holding a lecture about etherons, Bucharest University, 1982

1982: Publication of ETHERONICA – O POSIBILA RECONSIDERARE A CONCEPTULUI DE ETHER (This document).

Opening the Annual Conference in Physics, Craiova, 1983
MAIN ACHIEVEMENTS

Gas discharge and plasma physics (10 books, over 70 papers, 1958-2008),
- Introduction of the optogalvanic effect as a new principle for laser spectroscopy by thermionic and radio frequency detection, (with Eugen Badareu, Denisa Popescu, Johannes Richter, Carl B. Collins, C. Stanculescu, A. Surmeian, R. Bobulescu);

Laser spectroscopy (18 articles, 1964-1991)
- First experimental evidence of multiphoton spectra of free atoms and molecules with tuneable dye lasers (with Dr. Denisa Popescu and Prof. C.B. Collins (1973-74);
- State-selective laser photolysis of molecules and laser production of highly excited Rydberg states;
Pioneering work in gamma ray lasers (19 articles, 1979-2009)

- First experimental evidence of induced gamma emission of a long-lived Hafnium-178 isomer showing a highly efficient X-rays to gamma-rays conversion (in cooperation with Prof. C. B. Colins and an international team).

Quantitative Linguistics (8 books, 50 articles, 2006- to date)

In cooperation with Prof. Gabriel Altmann and his co-workers:

- Word frequency studies, Berlin-New York: Mouton de Gruyter (2009);
- Aspects of word frequencies, Lüdenscheid: RAM–Verlag (2009);
- Quantitative analysis of Italian texts, Lüdenscheid: RAM–Verlag (2010);
- Vectors and codes of text, Lüdenscheid: RAM–Verlag (2010);
- The Lambda-structure of texts, Lüdenscheid: RAM–Verlag (2011);
- Unified Modeling of Length in Language, Lüdenscheid: RAM–Verlag (2014);
See more at

- IOVITZU seen by Nicholas Ionescu-Pallas
- Silviu Olariu, Life and Scientific Works of
 Ioan-lovitz Popescu at the 75 Year Anniversary,
- Gabriel Altmann, On the symbiosis of
 physicists and linguists,
 http://89.37.223.172/2008_60_3/03-417-422.pdf
- http://www.nipne.ro/community/library/pope
 scu.php
- https://www.youtube.com/watch?v=hW1rrx4
 GHp0
- http://www.iipopescu.com/lovitzu_at_80_as
 seen_by_Dr._George_Dinescu.pdf
- http://www.iipopescu.com/
Physics at Magurele, Celebrating Acad. Ioan-Iovitz Popescu - 80 years (2012)

- *Ionised Gases* (2 vol., 1963, 1965, with Eugen Bădărău);
- *Déscharges électriques dans les gaz* (Dunod, Paris, 1968, with Eugen Bădărău);
- *General Physics* (3 vols., 1971, 1973, 1975, with Radu Țițeica);
- *The quantum effects of electromagnetic fluxes* (Reviews of Modern Physics USA, 1985, with S. Olariu);
- *Optogalvanic Spectroscopy* (1986);
- *Plasma Spectroscopy* (1987, with I. Iova);
- Optica Geometrică (1988);
- Optica Scalară (1998, with F. Uliu);

Iovitzu's lectures on OPTICS, holograph, University of Bucharest (1988).
Two major books of quantitative linguistics:
Word Frequency Studies (2009) and
Quantitative Analysis of Poetic Texts (2015)
with Gabriel Altmann et al. at Mouton de Gruyter.

See flyer at
http://www.degruyter.com/view/product/41158

See flyer at
http://www.degruyter.com/view/product/429368
PRINCIPLES OF DISCOVERY OF ETHERONS
I.-l. Popescu

Let's first consider a basic principle of physics, the Uncertainty Principle,

\[\Delta E \cdot \Delta t \geq \frac{1}{2}h \]
\[\Delta x \cdot \Delta p_x \geq \frac{1}{2}h \]

where \(\Delta E \) is the uncertainty in the energy measurement and \(\Delta t \) is the uncertainty in the time measurement at the same time as the energy is measured; \(\Delta x \) is the uncertainty of the position measurement and \(\Delta p_x \) is the uncertainty of the momentum measurement in the \(x \) direction at the same time as the \(x \) measurement.

2. Let's extend the above energy-time uncertainty relationship, \(\Delta E \cdot \Delta t \approx \hbar/2 \), to the scale of the Observable Universe. Obviously, once accepted this extension to the Universe Age, that is \(\Delta t \to \text{Universe Age} = 1/H \), where \(H \) is Hubble's constant, from the above uncertainty relation we get the most tiny energy quantum \(\Delta E = m_E c^2 = \hbar H/2 \), respectively the most tiny mass \(m_E = \hbar H/2c^2 \) that can exist. Its numerical value is thus \(m_E = \hbar H/2c^2 \approx 1.3494 \times 10^{-69} \text{ kg} \), where Planck's constant \(\hbar = \hbar/2\pi = 1.0546 \times 10^{-34} \text{ m}^2 \text{ Kg/s} \), light velocity in vacuum \(c = 299792458 \text{ m/s} \), and Hubble's constant \(H \approx 2.3 \times 10^{-18} \text{ s}^{-1} \) (that is an Universe Age of \(1/H \approx 4.35 \times 10^{17} \text{ s} \approx 13,8 \times 10^9 \text{ years} \)).

3. On the other side, from the space-momentum uncertainty relationship, \(\Delta x \cdot \Delta p_x \approx \frac{1}{2} \hbar \),
extended to the Observable Universe of radius $\Delta x \rightarrow R = c/H$, we get the eteron momentum as $\Delta p_E = (\hbar/2)/R = \hbar/2R = \hbar H/2c = (\text{etheron energy})/c$. This is, indeed the relationship Energy-Momentum $p = E/c$ for extreme relativistic velocities. From here we conclude that eteron moves with extreme relativistic velocities at least in the free cosmic space as considered above.

4. To the above arguments we add that the considered 1982 eteron article (this document) is entirely based on six basic cosmological relationships, namely

<table>
<thead>
<tr>
<th>$m_E c^2/\hbar H = k_1$</th>
<th>$GM/c^2 R = k_2$</th>
<th>$m_E c R/\hbar = k_3$</th>
<th>Eqs. $(4-6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_E c^2/(\hbar^2/m_E R^2) = k_4$</td>
<td>$r_E N_E^{1/2}/R = k_5$</td>
<td>$V/2\pi R^3 = k_6$</td>
<td>Eqs. $(7-9)$</td>
</tr>
</tbody>
</table>

where the first and third equations (with $k_1 = k_3 = 1$) represent the uncertainty principle extended to the whole Observable Universe as discussed above. Generally, k_1, k_2, ..., k_6 are non-dimensional constants of the order of magnitude of unity; $(c, \hbar = \hbar/2\pi)$ are the speed of light in vacuum and the reduced Planck’s constant; (G, H) are Newton’s constant, respectively Hubble’s constant; (m_E, r_E, N_E) are the mass, dimension, and total number of eteron in the finite Universe; finally, (M, R, V) are the mass, dimension (that is the curvature radius), and the volume of the finite (but unbounded) Universe.

5. As it is known, the theoretical estimation of the Universe mass is $M \approx 10^{53}$ kg, about two orders of magnitude greater than the
"observational" mass (deduced from the mass and distribution of the galaxies), as if the Universe mass would be stored in space under a form of "hidden mass", which escapes to the conventional observation. We take this opportunity to suggest that the "hidden mass" could be under the form of ether, as the dominant component of matter in the Universe or, in other words, that the entire mass of the Universe is practically constituted of free etherons. This allows to write the total number \(N = M/m \approx 10^{53}/1.3494 \times 10^{-69} \approx 7.4 \times 10^{121} \) of free etherons in the Universe. On the other hand, the Observable Universe is a sphere with a radius of about \(R = c \times (\text{Universe Age}) = c/H \approx 1.3 \times 10^{26} \text{ m} \), respectively with a volume of about \(V \approx 9.3 \times 10^{78} \text{ m}^3 \), hence a cosmic etheron density of \(\rho_c = N/V \approx 8 \times 10^{42} \text{ etherons/m}^3 \). The mean minimum inter-etheronic distance in an etheronic gas is \(r_{\text{mean}} = \Gamma(4/3)/(4 \pi \rho_c/3)^{1/3} = 0.554 \rho_c^{-1/3} \approx 2.77 \times 10^{-15} \text{ m} \), that is the right order of magnitude of the nucleon radius of \(10^{-15} \text{ m} \), and characterizes the "radius" of statistical fluctuations within which the punctual elementary particles set up. As far as the mean distance of about \(10^{-15} \text{ m} \) between the cosmic etherons is concerned, this doesn't mean that they stay all aligned at this fixed period one from each other. On the contrary, this mean inter-particle distance is a mean of a distribution which has a bell-shaped form, see http://en.wikipedia.org/wiki/Mean_inter-particle_distance

6. A similar ratiocination can be applied in continuation for the determination of etheron density, \(\rho_n \), within nucleons (protons or neutrons).
Thus, dividing the nucleon mass of about 1.67×10^{-27} kg by the etheron mass of about 1.35×10^{-69} 10 kg, we get the total number of etherons per nucleon to be about 1.24×10^{42}. On the other side, the nucleon radius is about 10^{-15} m, hence the nucleon volume is about 4×10^{-45} m3. Finally, we get the etheron density within nucleons to be about $\rho_n = 3.1 \times 10^{66}$ etherons/m3. This number is about 44 orders of magnitude higher than the cosmic average of "only" 10^{43} etherons/m3. Finally, the mean distance between nucleonic etherons is about $0.554 \times \rho_n^{1/3} \approx 7.4 \times 10^{-30}$ m. The latter is presumably the quark radius.

In a similar way we get the number of etherons inside an electron to be about 9.1×10^{-31} kg / 1.35×10^{-69} kg $\approx 6.7 \times 10^{38}$. But for electron we learned that it has a vanishing radius, hence a vanishing volume, thus possibly leading to a close-packed etheron structure. Obviously, the number of etherons in any atom is practically equal to their number in the corresponding nucleus (neutrons + protons) because the number of etherons carried out by electrons is about 3 orders of magnitude smaller.

Notice that the radius of the etheron proper, as the smallest possible mass, $m = \hbar H/2c^2 \approx 1.3494 \times 10^{-69}$ kg, should naturally be the gravitational Planck's length, $l_P = \sqrt{\hbar G/c^3} \approx 1.616 \times 10^{-35}$ m. This is "the shortest measurable length – and no improvement in instrumentation could change that", see

http://en.wikipedia.org/wiki/Planck_length. One can say about etheron that it is a true structureless point-like particle of a radius of the order $r_E \approx 10^{-35}$ m and a cross section of the order $\sigma \approx 10^{-70}$ m2.
7. Another relevant property of etherons is their mean free path. For this purpose, we shall use the etheron cross section \(\sigma \approx 10^{-70} \text{ m}^2 \) and the cosmic etheron density \(\rho_c \approx 10^{43} \text{ m}^{-3} \), leading to the cosmic mean free path \(\lambda_c = 1/\sqrt{2}\rho_c\sigma \approx 10^{26} \text{ m} \), a value of the order of the Universe radius. This means that the cosmic etherons do not collide each other while traversing the Universe. Also the corresponding cosmic mean collision frequency is \(\nu_c = c/\lambda_c \approx 10^{-18} \text{ s} \), a value about the Hubble constant, \(H \). The inverse value is the mean collision time, that is \(10^{18} \text{ s} \), about the Universe age (\(\approx 13.8 \times 10^9 \text{ years} \)). This also means that etherons need a lapse of time of the Universe age to collide each other.

By contrast, let's consider the nucleonic etherons (that is etherons inside the nucleon), by inserting in the above computations the nucleonic etheron density \(\rho_n = 4.2 \times 10^{86} \text{ m}^{-3} \). Using the same geometric cross section \(\sigma \approx 10^{-70} \text{ m}^2 \) we get the nucleonic etheron mean free path \(\lambda_n = 1/\sqrt{2}\rho_n\sigma \approx 2 \times 10^{-17} \text{ m} \), a value about 50 times smaller than the nucleon radius of \(10^{-15} \text{ m} \). This means that an external etheron penetrating the nucleon sphere will be imprisoned inside the nucleon by multiple scattering amongst the dense nucleonic etherons.

8. Generally, we expect the etherons to have extraordinary, hardly conceivable properties. This is basically caused by the fact that the etherons carry 100 % of the mass of the entire Universe, that is about \(10^{122} \times 10^{-69} \text{ kg} = 10^{53} \text{ kg} \), while their proper volume is about 61 orders of magnitude smaller than the total Universe volume. It is left to
the reader the pleasure to compute the last number (that is 61) from the given radius of the etheron of 10^{-35} m and of the Universe radius of 10^{26} m. In simple words, our Universe is void of mass, though, paradoxically, it contains the huge mass of 10^{53} kg, but carried by 10^{122} etherons with negligible volume.

9. A slightly completed version of the first paper of 1982 on the etherons\(^2\) has been published as a contribution to a book in 1983\(^3\). In continuation below is given the English translation of a fragment of the later (from pp. 22 – 24):

To this aim, for the future it remains to investigate the collective properties of the ether up to getting a set of relativistic hydrodynamic equations able to explain the fundamental phenomena such as the Universe expansion, the propagation of transversal small perturbations with light velocity, and the particle stability.

In the absence of such a theory, we shall tentatively assume the validity of the following simple hydrodynamic equation of the Euler type

$$m_0 n \left(\frac{\partial}{\partial t} - \ddot{c} \cdot \nabla \right) \ddot{c} = -\nabla p + \ddot{f} \quad \text{Eq. (31)}$$

\(^2\) the Romanian Academy journal of physics

\(^3\) the Romanian Academy publishing house,
Philosophical Approach on the Rationality of Science,
Ioan-Iovitz Popescu, A hypothesis on the quantification of the Universe: the etheron, pp. 9-32 (1983)
where \(m_0 \) is the etheron mass, \(n \) the etheron concentration, \(p = (1/3)n m_0 c^2 \) the etheron pressure and \(\vec{f} \) the friction force.

It is interesting to consider the hydrodynamic equation (31) of the ether by neglecting the friction force. Thus, denoting by \(\rho(r, t) = n(r, t) m_0 \) the ether density and with \(\vec{\Gamma}(r, t) = \rho(r, t) \vec{c} \) the mass flux density, the movement equation of the mass of the unit volume can be written as

\[
\frac{\partial \vec{\Gamma}}{\partial t} + (\vec{c} \cdot \nabla) \vec{\Gamma} = -\nabla p
\]

or, multiplying by \(\rho \),

\[
\rho \frac{\partial \vec{\Gamma}}{\partial t} = (\vec{c} \cdot \nabla) \vec{\Gamma} - \rho \nabla p
\]

Using further the well known identity

\[
(\vec{c} \cdot \nabla) \vec{\Gamma} \equiv \text{grad}(\Gamma^2 / 2) - \vec{\Gamma} \times \text{rot} \vec{\Gamma}
\]

as well as the state equation for the ultra-relativistic fluid

\[
p = (1/3)m_0 nc^2 = (1/3)c \Gamma
\]

the movement equation finally becomes

\[
\rho \frac{\partial \vec{\Gamma}}{\partial t} = -\vec{\Gamma} \times \text{rot} \vec{\Gamma} - \frac{2}{3} \text{grad}(\Gamma^2)
\]
In this way, the condition for stationary states of movements \(\frac{\partial \vec{\Gamma}}{\partial t} = 0 \) can be written solely by the field \(\vec{\Gamma} \), namely

\[
\vec{\Gamma} \times \text{rot}\vec{\Gamma} = \frac{2}{3} \text{grad}(\vec{\Gamma}^2)
\]

This is also the condition of stationary vortex formation in ether, i.e. of elementary particles. Remarkably, this is the analogous to the basic requirement for the magnetic confinement of hot stationary plasmas, a central problem of current researches in controlled thermonuclear fusion.

In other words, the above stationarity condition tells that, in each point of the space, the flow line \(\vec{\Gamma} \) and its vortex line \(\text{rot}\vec{\Gamma} \) are on an isobaric surface \(p = \text{const.} \) (that is \(\vec{\Gamma} = \text{const.} \)) passing through that point. Obviously, for spatially finite stationary movements occurring within particles or particle systems, the isobaric surfaces are closed ones, that is belong to the torus class. Moreover, within particles the etheron density should increase towards the interior of the isobaric surfaces, that is the vector \(\vec{\Gamma} \times \text{rot}\vec{\Gamma} \) should be oriented towards the interior of these surfaces.

An important class of particles is the one produced by small perturbations of the ether fluid, that is \(\text{grad}(\vec{\Gamma}^2) \sim \text{grad}(p^2) \approx 0 \). This means that the "curvature radius" of these particles is very great so that \(\vec{\Gamma} \times \text{rot}\vec{\Gamma} \approx 0 \). They can be polarized dextrorotatory or levorotatory as \(\vec{\Gamma} \) and \(\text{rot}\vec{\Gamma} \) are nearly parallel or nearly anti-parallel. Photons are
of course part of this class of particles with very small rest mass.

ENGLISH ABSTRACT OF THE 1982 PUBLICATION ON ETHERONS

Ether and Etherons - A Possible Reappraisal of the Ether Concept
by Ioan-Iovitz Popescu
iovitzu@gmail.com; http://www.iipopescu.com/

Abstract. A new explanation of the Newtonian law of gravitation is given, proceeding from the following statements: a) the Universe is finite and filled with some particles of very small mass, travelling at speed of light; b) all material bodies in the Universe are made up of such particles called "etherons"; c) the matter in the Universe is prevalingly under the form of etherons. The uncertainty principle of quantum mechanics and some dimensionless relations of relativistic cosmology - among which Mach's principle - are adopted in view of establishing the intrinsic characteristics of etherons as well as their number in the Universe. By applying statistical ratiocinations to the etheronic background, expressions of Hubble's and Newton's constants are derived in terms of some kinetic entities pertaining to the ether. The emergence of the inverse square law of force entails at the same time a very strong coupling of the etherons in a
nucleon and a saturation character of the binding forces. A wide discussion is undertaken concerning the consistency of the physical world picture suggested by the etheronic conjecture with the already constituted frame of conventional physics, drawing interesting and encouraging conclusions.

Historical considerations and problem setting

The idea of an universal medium filling the whole space is very old. Since Aristotle and Bhagavad-Gita until nowadays, the philosophers and the physicists and, more recently, the cosmologists strived to understand the "most subtle" state of matter, occasionally called "ether". The historical persistence of this concept, which escapes from the usual control by experiment – though intimately bound to the basic phenomena of the physical world, gets its motivation not only in the Latin aphorism "Natura abhorret vacuum", but mainly in the need to explain the phenomena by a causal infrastructure, whose existence is left to be subsequently tested. A study on the internal logic and the historical roots of various evaluations of the ether concept within the framework of the modern physical theories has recently been given by Liviu Sofonea and Nicolae Ionescu-Pallas [1].
From left to right: Iovitzu, Novacu, Sofonea and Ionescu-Pallas, three faculty colleagues with their professor of theoretical physics (Valer Novacu), 1980, at 25 years after graduating.

The history of the luminiferous ether, prevailing in the European physics of the XIX-th century, is well known - see, for instance, Edmund Whittaker [2]. Some new aspects regarding the irrelevant character of the ether, as well as its compatibility with the special relativity theory, have been investigated by Nicolae Ionescu-Pallas [3]. The "irrelevance" of the ether seemed in the past stranger than today, when physicists are already used to "magnetic monopoles", "partons", "quarks" and others.

In the present paper we will consider such an irrelevant entity - the "etheron" - in connection with the cosmological role of the ether, so much discussed in the last decade. First of all we will shortly expose the major achievements in
cosmology as obtained by adoption or adaptation of the ether concept just to satisfy the modern principles of "covariance", "minimal action", "physical field" and so on.

The first serious attempt to elaborate an etheronic scheme of the matter is due to Georg Szekeres [4]. Extensions of this trial, aiming to obtain separate conditions of conservation for the ether and the substance, have been done by Nicolae Ionescu-Pallas [5] in his recent treatise entitled "General Relativity and Cosmology". Retaining the hypothesis of the existence of two kinds of conservative "matter" – ether and substance – and trying at the same time to lessen the differential order of the field equations, Nicolae Ionescu-Pallas and Liviu Sofonea [6] succeeded to build a cosmological model; here appears a sort of universal ether and Newton's constant G, as well as the cosmological constant Λ, vary just to ensure an adiabatic expansion of the Universe. The latter model, called also "Cosmologia Veradiensis", allows to get an idea of the way to reconcile the ether concept with the present theories of Big Bang and expanding Universe. Another remarkable model - also based on the ether concept and having some common features with Cosmologia Veradiensis, is due to Nathan Rosen [7]. The exceptional value of Rosen's model consists in the fact of representing an oscillating system, thus preventing the collapse at maximum contraction.

The question of what effectively consists the physical structure of the ether remains an extremely controversial subject, in spite of valuable suggestions made by physicists of mark
such as E. Sudarshan et al. (the ether as a superfluid state of particles and antiparticles [8]), J. P. Vigier et al. (the ether made up of bosons of minute mass [9]), A. Das and P. Agrawal (the ether of quanta or particles of extremely tiny mass [10]), J. R. Rao et al. (the ether of particles responsible for the “strong” gravity [11]).

Let us remind, finally, two hypotheses based on options favorable to an ether with discrete structure. The first, due to Nicolae Ionescu-Pallas and Ioan Gottlieb [12], accredits the opinion that the Hubble’s expansion would be determined by a scalar field with quanta of a tiny rest mass, as given by the expression

\[m_0 = \frac{3}{2}(\hbar H/c^2) \approx 10^{-69} \text{ kg} \quad (1) \]

where \(H \) is Hubble’s constant, \(c \) the light speed in vacuum and \(\hbar = \hbar/2\pi \) the Planck’s reduced constant "\(\hbar \)-bar". The second hypothesis, more recent, argues on the possibility of an universal medium structured of neutrinos [13].
Ioan-lovitz Popescu,
February, 1980,
Bucharest, on the
eve of etheron
discovery

And here follows the pdf of the original article of 1982,

ETHERONICA — O POSIBILA RECONSIDERARE A CONCEPTULUI DE ETER

An English translation is posted at http://www.iipopescu.com/ether_and_etherons.html
Ether and Etherons (word version 210 KB) - iipopescu
ETHERONICA – O POSIBILĂ RECONSIDERARE A CONCEPTULUI DE ETER

I. Iovița Popescu

Institutul Central de Fizică, București, Mâgurele, C.P. MG-6, ROMANIA

ETHERONICS – A POSSIBLE REAPPRAISAL OF THE ETHER CONCEPT.

A new explanation of the Newtonian law of gravitation is given, proceeding from the following statements: a) the Universe is finite and filled with some particles of very small mass, traveling at the speed of light; b) all the material bodies in the Universe are made up of such particles called „eterons”; c) the matter in the Universe is prevailing under the form of eterons; d) the Lesage hydrodynamic mechanism for gravitational interaction is valid, provided that the cosmical background is the ether made up of eterons. The uncertainty principle of quantum mechanics and some dimensionless relations of relativistic cosmology – among which Mach’s principle – are adopted in view of establishing the intrinsic characteristics of eterons as well as their number in the Universe. By applying the statistical rationalizations to the etheronic background, expressions of Hubble’s and Newton’s constants are derived in terms of some kinetic entities pertaining to the ether. The emergence of the inverse square law of force entails at the same time a very strong coupling of the eterons in a nucleon and a saturation characteristic for the binding forces. A wide discussion is undertaken concerning the consistency of the physical world picture suggested by the etheronic conjecture with the already constituted frame of conventional physics, drawing interesting and encour aging conclusions.

1. CONSIDERAȚII Istorice ȘI PUNEREA PROBLEMEI

Idea dea de mediu universal care umple tot spațiul este foarte veche. De la Aristotel și Bhagavad Gita și pînă în timpurile noastre, filozofii, fizicienii și, mai recent, cosmologii, s-au străduit să înțeleagă starea „cea mai subțîltă” a materiei, denumită uneori „eter”. Persistența istorică a acestui concept, care scoapă controlului obișnuit prin experiență – deși este întim legat de fenomenele fundamentale ale lumii fizice, își găsește motivarea nu numai în aforismul latin „Natura abhorret vacuum” ci și, mai ales, în nevoia de explicare a fenomenelor pornind de la o infrastructură cauzală a cărei existență rămîne să fie testată într-un studiu ulterior al cunoașterii umane. Un studiu privind logica internă și rădăcinile istorice ale diferitelor evaluări ale conceptului de eter, în cadrul teoriilor fizice moderne, a fost făcut recent de Liviu Sofonea și Nicolae Ionescu-Pallas [1].

Istoria eterului luminifer, dominant în fizica europeană a secolului al XIX-lea, este binecunoscută – vezi, de exemplu, Edmund Whittaker [2]. Unele aspecte noi privind caracterul irelevant al eterului, ca și compatibilitatea sa cu teoria relativității restrînsă, au fost investigate de Nicolae Ionescu-Pallas [3]. „Irelevanța” eterului a părut în trecut mai stranie
deci apare astăzi, cind fizicienii s-au „obișnuit” deja cu „monopolul magnetic”, „partonii” „cuarcii” s.a.

În lucrarea de față vom considera o astfel de entitate irrelevantă — „etheronul” — în legătură cu rolul cosmologic al eterului, atât de mult discutat în ultima decadă. Mai întâi vom expune, pe scurt, realizările majore în domeniul cosmologiei, obținute prin adoptarea și adaptarea conceptului lui de eter astfel ca să satisfacă principiile contemporane de „covarianță”, „acțiune minimă”, „cimp fizic” s.a.m.d.

În ce constă de fapt structura fizică a eterului rămâne un subiect deosebit de controversat, în ciuda sugestiei valoroase făcute de fizicienii de marcă: E. Sudarshan s.a. (eterul ca o stare superfluidă de particule și antiparticule [8]); J.P. Vigier s.a. (eterul alcătuit din bosoni de masă infinită [9]); A. Das și P. Agrawal (eterul format din cuante sau particule de masă extrem de mici [10]); J.R. Rao s.a. (eter din particule responsabile pentru gravitatea „tare” [11]).

Vom mai arăta, în fine, două ipoteze bazate pe opțiuni favorabile unui eter cu structură discreță. Prima, datorată lui Nicolae Ionescu-Pallas și lui Ioan Gottlieb [12], acreditează opinia că expansiunea Hubble, ar fi determinată de un cimp scalar ale cărui cuante au o masă de repaus infinită, dată de expresia

\[m_0 = \frac{3 \cdot kH}{2} \approx 10^{-60} \text{ kg}, \]

unde \(H \) este constanța lui Hubble, \(c \) — viteza luminii în vid iar \(h \) — constanta raționalizată a lui Planck. A doua ipoteză, mai recentă, argumentează posibilitatea unui mediu universal cu structură neutrinală [13].

În continuare vom face unele considerații cu privire la relația (1), care constituie, de fapt, și punctul de pornire al abordării noastre. Observăm mai întâi că această relație, fundamentală pentru cele ce urmează, rezultă imediat dacă interpretăm constanta lui Hubble, \(H \), ca frecvență
unghiulară, ω₀, a unui proces oscilatoriu care are loc la scară cosmică. Astfel, făcind identificarea temerări a Universului fizic cu un oscilator armionico isotrop tridimensional, cu frecvența proprie ω₀ = H, se vede că relația (1) este o consecință a expresiei energiei stârții fundamentale (3/2) hω₀ = (3/2) hH = m₀c² ≈ 10⁻³⁸ eV. În sprijinul acestei ipoteze poate fi invocat modelul de Univers oscilant al lui Richard Tolman [14], conform căruia frecvența unghiliară a pulsăției cosmic de ω₀ ≈ H. Vom fi condusi, de asemenea, să acceptăm că stările vecine „excitate” ale Universului sint energetic egal distanțate cu hω₀ = hH și că energia minimă care poate fi schimbată între sistemele materiale care interacționează este dată de cuanta hω₀ = hH.

În cele ce urmează vom denumi „etheron” cuanta de energie hω₀ = hH ≈ mh₀c². Cum energiile acestei cuante este extrem de mici (≈ 10⁻³⁸ eV) iar, pe de altă parte, graviatia este cea mai slabă interacțiune cunoscută, apare plauzibilă presupunerea că etheronii reprezintă particulele de schimb asociate interacțiilor gravitaționale. Mai mult, cum vom argumenta mai departe, sintem condus la a postula existența unei interacții asociate oricărei forme de energie, de tipul „Energie = Energie + Etheron”, unde prin Energie putem înțelege orice substructură a Universului, inclusiv particulele elementare. În general, existența unei interacții de acest tip conduse la un potențial stationar de tip Yukawa, F(τ / r) = F(r) / r, unde λ este lungimea Compton asociată particulei care mediază interacțiunea. Pentru interacțiile gravitaționale, metadele presimilă de un etheron, ψ = h/mₚc ≈ (hH) ≈ H, adică de ordinul de mărimi al razei Universului. Pentru interacțiile tari, metade de un plon (proces presimilă „multi-etheronic” : mₖ ≈ mₚ), λₖ = h/mₖc (≈ λ₈/n) ≈ rₖ ≈ 10⁻¹⁸ m, adică de ordinul de mărimi al razei nucleonului. Cautarea acestei cuante de masă nu avem în vedere proprietățile de reper absolut ale eterului. Conceptul de etheron ar reflecța numai existența unor entități cu proprietăți de particulă, prin „condensarea” cărora (sub formă de masă inertială și de masă „de interacție” a etheronilor aflați „în tranziție”) ar urma să putem explica structura extrem de complexă a microbiecetelor sau care sintem confruntați în prezent.

O altă reflecție, inspirată de relația (1), este legată de observabilitatea procesului de emisie, respectiv de absorbiune, a cuantei de energie hω₀ = hH. Astfel, conform principiului de incertitudine al lui Werner Heisenberg, timpul în care un astfel de proces are loc cu siguranță este τ ≈ (1/2) h/hω₀ = 1/2ω₀ = 1/2H, adică de ordinul de mărimi al ecoulor cosmic („vîrste” Universului). Datorită masei lor înfime și a rarității extreme a evenimentelor (ciocnirilor, proceselor) în care sinti implicații, etheronii se deplasează (aproape) cu viteza luminii și au, mai degrabă, proprietăți de cuante decât de particule. Argumente în favoarea acestei situații aparante străine (dar esențială pentru cele ce urmează) sint aduse în cadrul teoriei lui Louis de Broglie privind fotonii cu masă de repaus nenulă și cu viteza apropiată de viteza luminii în vid [15]. În acest context, masa de ordinul de mărimi dat de expresie (1), m ≈ hH/c² ≈ 10⁻⁴⁶ kg, este menționată și în prezent drept „masa de repaus a fotonului” sau a „bosomului masiv” [16].
Un alt argument interesant în favoarea existenței cuanțelor de energie $\hbar \omega_0 = \hbar H$ este următorul. Astfel, datorită faptului că intr-un „gedanken experiment“ timpul de detecție pentru un etheron este de ordinul $1/H$, nu putea evita o imprecizie de ordinul $\hbar \omega_0 = \hbar H$ în măsurarea energiei, respectiv o imprecizie în masă de ordinul $\hbar \omega_0/c^2 = \hbar H/c^2$. Adoptând modelul static al lui Einstein cu constantă cosmologică, orice fluctuație a masei Universului, M, induce, via relația $GM/c^2R = \pi/2$, o fluctuație a razei de curbură R a Universului (G este constanta lui Newton). Din $\delta M = \hbar H/c^2$ și din ultima relație rezultă $\delta R = (2/\pi) (\hbar G/c^3) (H/c)$ sau $\delta R^2 = (4/\pi) (\hbar G/c^3) (HR/c)$. Cum $HR/c \approx 1$ și $L_\mu = (\hbar G/c^3)^{1/2}$ este lungimea gravitațională Planck, rezultă că fluctuația pătratică a razei de curbură a Universului,

$$\sqrt{\delta R^2} = \frac{2}{\sqrt{\pi}} \left(\frac{HR}{c} \right)^{1/2} \left(\frac{\hbar G}{c^3} \right)^{1/2} \approx L_\mu \approx 10^{-35} \text{ m},$$

este de ordinul de mărime al razelor gravitaționale Planck, L_μ. Această concluzie concordă cu opinia lui Arthur Eddington privind fluctuațiile razei de curbură a Universului [17].

Cuantă de energie $\hbar \omega_0 = \hbar H$, pe care am denumit-o „etheron”, este, prin definiție, particula constitutivă a eiterului cosmic. Întrucât etheronul are cea mai mică masă compatibilă cu principiul de incertitudine din mecanica cuantica, rezultă că eiterul reprezintă cel mai „fin“ fluid care încă mai are o structură discretă (corpusculară). Desigur, eiterul este o formă de existență a materiei, dar calitativ diferită de substanța obișnuită (atomică și moleculară) sau de radiație (fotoni). Mai mult, vom presupune că eiterul se supune principiului inerției și că produce, prin prezența sa, o modificare a geometriei spațio-temporale. Conform modelului static al lui Einstein, masa Universului (conceput ca finit dar nelimitat) este dată de expresia $M = (\pi/2) c^2 R/G$; mărimea razei de curbură R este de ordinul c/H. În acest fel, masa întregului Univers, prezisă teoretic, este exprimată exclusiv prin constante universale: $M \approx c^3/GH \approx 10^{53}$ kg. O a doua cale de estimare a acestei mase se bazează pe formula $M = 2\pi R^2$, unde $R \approx c/H$ iar ρ este densitatea masei în Univers, mărime observațională, dedusă din masa și distribuția galaxiilor. Cum se știe, estimarea teoretică $M \approx 10^{53}$ kg este cu circa două ordine de mărime mai mare decât masa „observațională”, ca și cum masa Universului ar fi înmagazinată în spațiu într-o formă care scapă observației convenționale (problema așa-numită „mase ascunse”). Folosim această ocazie pentru a sugera că „masa ascunsă” ar putea fi sub formă de eiter.

Pentru a explica legea universală a gravitației cu ajutorul conceptului de eiter, argumentat mai sus, avem nevoie de încă două ipoteze esențiale, și anume: a) toate corpurile materiale sint formate din etheroni; b) atracția gravitațională este, de fapt, rezultatul decompensării presiunii hidrodinamice exercitată asupra corpusculilor de către eiter universal, ca

2 Amintim aici conceptia despre eiter a filozofului materialist român, prietenul Grigore Sturdza, la stîrîș în secolul al XIX-lea, el a avut atunci o intuiție corectă a ordinului de mărime al cantităților implicate, în ciuda stadiului incipient al cosmologiei în acea epocă.
rezultat al ecranării lor reciproce. Modulul care lucrează aceste ipoteze și cum se obține consistența globală a acestui model, atât în el însuși, cât și față de cadrul deja constituit al relativității generale și cosmologiei moderne, formează obiectul lucrării de față. Mencionați că explicarea gravitației, în felul în care o vom face, are unele trăsături comune cu teoria lui Iosif Adâm, teorie bazată pe ipoteze cu unul mediu format din cuante [18].

Înainte însă de a trece la demonstrarea legii gravitației, vom prezenta un argument adițional cu privire la viteza eteronilor precum și conșciențele care descurg din caracterul lor ultrarelativist. Pentru aceasta vom face așez din nou la principiul de incertitudine — referindu-ne de această dată la relația impuls-coordonată. Astfel, cea mai mică eroare posibilă în determinarea impulsului unui sistem fizic este dată de impulsul unui eteron (care este, în mod alcătoriu, emis sau absorbit), adică \(\delta p = p_\varepsilon = m_\varepsilon v_\varepsilon = (hH/c^2) v_\varepsilon \). Această cantitate trebuie corroborată cu eroarea cea mai mare posibilă în determinarea coordonatelor de poziție \(\delta x \), conform legii lui Heisenberg \(\delta p \delta x \approx \hbar/2 \). Cu „dimensiunea caracteristică” a Universului este \(c/\hbar \), rezultă că \(\delta x \approx (1/2) \hbar/c \) și, în consecință, \(v_\varepsilon \approx c \). În dezvoltarea acestuia argument am considerat cantitatea \(hH/c^2 \) mai degrabă ca massa dinamică decât masa de repaus a eteronului. De fapt, putem presupune că viteza eteronului nu este chiar \(c \) ci puțin mai mică — astfel că masa de repaus să fie de același ordin ca masa dinamică (de exemplu, dacă \(v_\varepsilon/c = \sqrt{3}/2 \approx 0.866 \), atunci \(m_\varepsilon = (1/3)m_\varepsilon = (1/2) hH/c^2 \). Pe de altă parte, pentru conformitate cu reprezentările mecanicii statistice, se poate presupune că vitezele eteronilor sunt distribuite în jurul unei valorii medii, \(v_\varepsilon \), cu puțin mai mică decât \(c \), într-o bandă îngustă care, practic, poate fi neglijată. O situație similară, în care „ particule cu proprietăți de cuantă”, de energie dată, se deplasează cu viteza \(c \), întîlnim în teoria gravitației a lui J.L. Synge [19].

\[
E = m_\varepsilon c^2 \sqrt{1 - v_\varepsilon^2/c^2} + m_\text{euc} c^2 \sqrt{1 - v_\varepsilon^2/c^2},
\]

energia sistemului tindind spre zero pentru \((v_\varepsilon, v_\varepsilon) \rightarrow c \). Cum vom arăta în continuare, „modelul eteronic” este deosebit de incazator, el permite deducerea atât a legii lui Newton pentru gravitație, cât și a faptului că agregatele primare, formate direct din eteroni, au un defect de masă comparabil cu suma constituenților eteronici. De fapt, cum se știe, un raport aproape de unitate dintre energia de legătură și energia de repaus este caracteristic pentru nucleoni [22]. Să fie aceasta o indicație că „partonii” sau „cuarcii” ar putea fi moduri de mișcare colectivă eteronică?
2. RELAȚII COSMOLOGICE FUNDAMENTALE

Pînă aici am pregătit următoarea ipoteză remarcabilă: «Universul este umplut aproape exclusiv cu particule de masă înfînă, \(m_x \), care se mișcă haotic cu viteza luminii, \(c \). Masa în stare aggregată, înmagazinată în stele și galaxii, poate fi formal considerată ca fiind construită din astfel de particule de masă \(m_x \) — denumite de noi etheroni — al căror număr este proporțional cu raportul dintre masa înertială a corpului și masa etheronului. Pentru a explota această presupunere în lămurirea „mecanismului” gravitației, avem nevoie de un corp de relații cantitative deja stabilit, care să ne permită o conciliere a demersului teoretic etheronic cu cosmologia relativistă. Vom face aceasta prin adoptarea următorului set de șase relații simple

\[
\frac{m_x c^2}{k_H} = k_1, \quad \frac{GM}{c^2} = k_2, \quad \frac{m_x c R}{\dot{h}} = k_3, \quad \frac{m_x c^2}{k_2} = k_4, \quad \frac{r_E \sqrt{N_E}}{R} = k_5, \quad \frac{V}{2\pi R^2} = k_6,
\]

unde \(k_1, k_2, \ldots, k_6 \) sint constante adimensionale de ordinul de mărime al unității; \((c, \hbar)\) sint viteza luminii în vid și constanta raționalizată a lui Planck; \((G, H)\) sint constanta lui Newton, respectiv constanta lui Hubble; \((m_x, r_E, N_E)\) sint masa, dimensiunea și numărul total al etheronilor din Universul finit; în fine, \((M, R, V)\) sint masa, dimensiunea (adică raza de curbură) și volumul Universului finit (dar neînlămit). Faptul că adoptăm simultan modelul static al lui Einstein și constanta lui Hubble nu constituie în mod necesar o contradicție din două motive: 1) expunerea nu este singura explicație pentru constanta \(R \); 2) chiar și modelul static dă corect ordinul de mărime al caracteristicilor Universului.

Să facem cîteva comentarii asupra originii și oportunității relațiilor (4—9).

Relația (4) pur și simplu afirmă că etheronii există; este punctul nostru axiomatic, pe care îl acceptăm împreună cu argumentele care îl susțin.

Relația (5) este o expresie a principiului lui Mach, independentă de modelul cosmologic adoptat. Pentru modelul static al lui Einstein cu curbură pozitivă \(k_2 = \pi/2 \); pentru Universul în expansiune \(k_2 = \pi \) [6].

Relația (6) reprezintă o adaptare pentru etheron a relației lui Feza Gürsey [23] și Fred Hoyle [24], care presupune o particulă scalară de măsoare extrem de mică. Aceasta este compatibilă cu relația (4), arătând că raza de curbură, \(R \), și raportul \(c/H \) au același ordin de mărime [5].

Relația (7) este, formal, o consecință a relației (6) și introduce o restricție pentru constantele necunoscute \((k_5, k_6)\), anume \(k_5 = k_6 \). Totuși, din această relație rezultă un sens fizic relevant, ceea ce ne permite să o considerăm ca pe o formulă independentă. Astfel, ea afirma că cuanta de rotație \(\hbar^2/m_x R^2 \) are același ordin de mărime cu cuanta de oscilație
\[h\omega_0 = hH \simeq m_pc^2. \]
Cu alte cuvinte, relațiile de incertitudine, discu-
tate mai înainte, pot fi din nou scrisе într-o formă în care cuanta de oscila-
tie este înlocuită de cuanta de rotație. Acest fapt poate fi interpretat ca o dovadă a stabilității Universului nu numai față de oscilații (cind o en-
ergie de ordinul \(m_pc^2 \) este întimplător emisă sau absorbbită), ci, la fel de bine și față de rotații (cind o energie de ordinul \(h^2/m_p R^2 \) este implicață în mod similor).

Relația (8) reprezintă o transpunere ad litteram pentru eteronii a faimoasei relații stabilite de Arthur Eddington pentru protoni [17]. O versiune simplificată a raționamentului lui Eddington, dată de Nicolae Ionescu-Pallas [5], este: „Dacă în Universul finit și neterminat al lui Ein-
stein ar exista o singură particulă (proton), ea ar fi descrisă de o undă care, datorită curburii spațiului, ar prescrie o incertitudine a poziției centrului de inerție, egală cu \(R \). Admițind că în Univers există un număr finit de \(N_p \) particule (protonii), incertitudinea se reduce, potrivit legilor statisticii matematice, la \(R/\sqrt{N_p} \). Această mărimă este identificată de Eddington cu extensia spațiului a particulei (care devine astfel nepunctiformă).”
Evident, dacă particulele libere, care umplu în mod predominant Univers-
ul, nu sint protonii, ci eteronii, raționamentul de mai sus este la fel de valabil și pentru modelul nostru de Univers electronic, de unde rezultă relația (8).

Relația (9) are un conținut pur geometric și afirmă că volumul Uni-
versului și puterea a treia a dimensiunii sale caracteristice (a razei de cur-
bură) se află într-un raport constant. Astfel, constanța \(k_6 \) are valoarea 2/3 într-o geometrie euclidiană și valoarea \(\pi \) într-o geometrie riemanniană (închidere topologică).

Cele mai plauzibile valori pe care le vom adopta pentru setul de con-
stante \((k_1, \ldots, k_6) \) sint următoarele:

\[k_1 = 1, \quad k_2 = \frac{\pi}{2}, \quad k_3 = 1, \quad k_4 = 1, \quad k_5 = \frac{1}{2}, \quad k_6 = \pi. \]
(10)

Valoarea \(k_1 = 1 \) rezultă din modul în care am concretizat conceptul de eteron. Valorile \(k_2 = \pi/2 \) și \(k_6 = \pi \) provin din modelul cosmologic static al lui Einstein. Valoarea specială \(k_5 = 1/2 \) a fost aleasă astfel ca să dea corect dimensiunea protonului \((r_p \approx 1.4 \cdot 10^{-15} m) \) cind formula (8) este folosită în interpretarea inițială a lui Eddington. Valoarea \(k_3 = 1 \) rezultă ca o consecință a relației \(R = (k_3 k_4)c/H \), a alegerii deja făcute pentru \(k_1 = 1 \) și a faptului acceptat în cosmologia contemporană că, la epoca actuală, \(R \approx cH \) [5, 6, 25]. Odată valoarea lui \(k_1 = 1 \) admisă, rezultă și \(k_1 = k_5 = 1 \).

 Mai departe vom vede ca setul de constante (10) conduce la un cuplaj foarte tare pentru eteronii, presupuși constituienți ai nucleonului. Este interesant de observat cum o condiție macroscopică la scară cosmică, cum este, de exemplu, închiderea topologică a Universului, conduce la o consecință energetică la nivel infranucleonic.
3. ETERUL CA GAZ ULTRARELATIVIST

Multe proprietăți fizice ale eterului pot fi acum deduse din afirmațiile de mai sus, exprimate prin reulațile cosmologice fundamentale (4–9), din proprietățile cuantice (presupuse) ale eteronului și din procedecele convenționale ale mecanicii statistice.

Vom începe cu caracteristicile întrinseci ale eteronului, a căror asemănare cu caracteristicile fotonului este transparentă. Astfel, energia E_E, masa m_E, impulsul P_E și lungimea de Broglie asociată $\lambda_E = \hbar/P_E$ sint date de relațile

$$E_E = m_Ec^2 = k_1 \hbar H \simeq 10^{-33} \text{ eV},$$

$$m_E = \frac{E_E}{c^2} = k_1 \frac{\hbar}{c} \simeq 10^{-69} \text{ kg},$$

$$P_E = m_Ec = k_1 \frac{\hbar H}{c},$$

respectiv

$$\lambda_E = \frac{\hbar}{P_E} = \frac{1}{k_1} \frac{c}{H} = \frac{1}{k_2} \quad R \simeq 10^{26} \text{ m}. \quad (12)$$

Ultima reație reprezintă egalitatea matematică a două entități foarte diferite, legând proprietățile cuantice ale eteronului de proprietățile geometrice ale Universului.

Mai departe, din ecuația (5) și din egalitatea $R = (k_2/k_1) c/H$, putem exprima masa Universului în forma

$$M = \frac{k_2 k_3}{k_1} \frac{c^3}{GH} \simeq 10^{33} \text{ kg}. \quad (13)$$

Cum eteronul reprezintă componenta dominantă a materiei din Univers, putem presupune că întreaga masă a Universului este constituită practic din eteroni liberi. Aceasta permite să scriem $M = N_E m_p$ unde N_E este numărul total de eteroni liberi din Universul lui Einstein,

$$N_E = \frac{M}{m_p} = k_2 k_3 \frac{c^5}{\hbar G H^2} \simeq 10^{32}. \quad (14)$$

Dimensiunea eteronului poate fi dedusă din ecuațiile (8), (14) și $R = (k_2/k_1) c/H$, astfel că

$$r_E = k_5 \left(\frac{k_3}{k_2} \right)^{1/2} \left(\frac{\hbar G}{c^3} \right)^{1/2} = k_5 \left(\frac{k_3}{k_2} \right)^{1/2} L_P \simeq 10^{-35} \text{ m}; \quad (15)$$
cum era de așteptat, dimensiunea etheronului este de ordinul de mărime al lungimii Planck, adică al fluctuațiilor cuantică ale spațiului (conform formulei (2)).

Vom trece acum la proprietățile statistice ale etheronului, definind mai întâi o secțiune eficace etheron — etheron „clasical” prin formula \(\sigma_E = \pi (2r_E)^2 \), adică

\[
\sigma_E = 4\pi \frac{k_2}{\hbar^2} \frac{k_2}{k_2} \frac{L_E^2}{c^2} \approx 4\pi \frac{k_2}{\hbar^2} L_E^2 \approx 10^{-70} \text{ m}^2. \tag{16}
\]

O semnificație particulară a ultimei formule constă în aceea că ea permite să exprimăm constanta lui Newton a atrației universale prin secțiunea eficace \(\sigma_E \), mărime de natură statistică,

\[
G = \frac{k_2}{4\pi \hbar^2} \frac{\sigma^2 \sigma_E}{c^2}; \tag{17}
\]

acest rezultat neașteptat poate fi o dovadă că gravitația însăși ar fi de origine statistică (în termenii modelului hidrodinamic al lui Lesage). Menționăm, în acest context, că Edward Milne în „Relativitatea cinematică” [26], a dedus pentru prima dată legea newtoniană a forței de atrație în cadrul unei teorii compatibile cu principiul lui Mach [formula (5)].

O altă relație interesantă, care leagă entități inframicroscopice și ultramacroscoape, este \(L_E^2 = k_2^2 a_2 \lambda_2 \lambda_2 \), unde \(\lambda_2 = h/Mc = (k_2/k_3) \hbar c/\rho \hbar c \hbar c \) este lungimea Compton asociată Universului.\(^2\)

\(^2\) Este interesant de fapt, în acest context, o comparație între interacțiile gravitaționale și interacțiile tari. Cum am arătat mai sus, este plauzibil ca potențialul static gravitațional să fie de tip Yukawa:

\[
\Phi(r) = \frac{GM}{r} \exp(-r/\lambda_E) = \frac{m^2 \exp(-r/R)}{m \exp(-r/R)},
\]

unde \(m \) este masa corpului iar \(\lambda_E \), constanța de cuplaj. \(G \), este constanta lui Newton. O expresie asemănătoare rezultă pentru interacțiile tari dacă introducem masa pionului, \(m_\pi \), masa nucleonului \(m_n \), raza nucleonului \(r_n \), lungimea Compton a pionului,

\[
\lambda_n = \frac{h}{m_\pi c} \approx r_n,
\]

lungimea Compton a nucleonului, \(\lambda_n \), secțiunea eficace a pionului, \(\sigma_n = \lambda_n \lambda_\pi \), constanța de cuplaj nucleonică,

\[
G_n = \frac{c^2 \sigma_n}{h} \approx \frac{r_n \sigma^2}{m_n},
\]

Remarcăm raportele dintre mărimele la scară cosmică și infranucleară:

\[
\lambda_E/\lambda_n \approx 10^{41},
\]

\[
G_n/G \approx 10^{31}
\]

[Krecet, Caldirola s.a. (16)].
În ciuda masei și dimensiunii lor înfime, concentrația eteronilor în Univers este impresionantă. Într-adevăr, din \[V = 2\pi k_{B} R^{3} = 2\pi k_{B}^{3} (k_{3}c/k_{1}H)^{3} \] și din presupusa omogenitate și izotropie a distribuției eteronilor, putem scrie
\[n_{E} = \frac{N_{E}}{V} = \frac{k_{B}^{3}c^{2}}{2\pi^{2}k_{B}^{2}k_{3}^{2}} \frac{H^{2}c^{2}}{hG} \approx 10^{43} m^{-5}, \] astfel că distanța medie dintre eteroni, \(r_{E} \approx 0.5 n^{-1/3} \approx 10^{-10} m \), caracterizează „raza” fluctuațiilor statistică (în care se formează particulele elementare punctuale).

Cantitățile \(\sigma_{R} \) și \(n_{E} \) determină drumul liber mediu „clasici” de ciocnire eteron-eron
\[l_{E} = \frac{1}{\sqrt{2} n_{E} \sigma_{R}} = \frac{1}{2 \sqrt{2}} \frac{k_{B}k_{3}c}{k_{3}^{2}H} = \frac{k_{B}}{2 \sqrt{2} k_{3}^{2}} R \approx 10^{25} m, \] mărime de ordinul razei de curbură a Universului.

Putem, de asemenea, defini frecvența medie de ciocnire a eteronilor
\[\nu_{E} = \frac{c}{l_{E}} = 2 \sqrt{2} \frac{k_{B}k_{3}c^{3}}{k_{3}^{2}k_{6}} H \approx 10^{18} s^{-1}. \]

În acest mod, constanta lui Hubble (a doua de interes cosmologic, pe lingă constanta lui Newton) capată, de asemenea, o explicație statistică.

În fine, alte trei caracteristici statistice ale gazului eteronic și anume \(R_{E} \) (rația ciocnirilor), \(p_{E} \) (presiunea gazului eteronic ultrarelativist, analogă presiunii radiației Planck) și \(T_{E} \) (temperatura gazului eteronic) completează tabloul proprietăților acestui fluid străin
\[R_{E} = \frac{1}{2} n_{E}^{3} \sigma_{R} a = \frac{1}{2\pi} \frac{k_{B}^{3}k_{3}^{2}c^{2}}{k_{6}^{2}} \frac{H^{3}c^{2}}{hG} \approx 10^{23} m^{-3}. s^{-1}, \]
\[p_{E} = \frac{1}{3} n_{E} m_{E} c^{2} = \frac{k_{B}^{3}k_{2}c^{2}}{6\pi k_{3}^{2}k_{6}} \frac{H^{2}c^{2}}{G} \approx 10^{-13} \text{ atm}, \]
\[T_{E} = \left(\frac{3p_{E}}{a} \right)^{1/4} \approx 30 K \] (und \(a = \frac{8\pi^{3}}{15} \frac{k^{4}}{c^{3}h^{3}} \).

Adoptând pentru constanta lui Hubble valoarea \(H = 1/(6.53 \cdot 10^{7} s) \) și pentru constantele \(k_{1} \) valorile probabil de date de setul (10), rezultă o temperatură eteronică de circa 30 K, valoare care este numai cu un ordin de mărime mai mare decit temperatura observată a radiației Planck cosmice. Această estimare a temperaturii eteronică ţine seama de faptul că presiunea partzială a eteronilor (în stare liberă sau sub formă de agregate primare simple) este considerabil mai mare decit aceea a agregatelor eteronice complexe (cum sint, presupunem, particulele elementare și fotonii).

4. DEDUCEREA LEGII DE ATRAȚIE UNIVERSALĂ

Vom trece acum la deducerea celebrei legi a forței newtoniene. Vom demonstra aceasta mai întii pentru doi nucleoni iar apoi vom examina circumstanțele în care rezultatul poate fi extins la corpuri macroscopice.
Astfel, să considerăm două corpuri (nuclеoni) sferice și omogene, A și B conținând \(N_A \) respectiv \(N_B \) etheroni, plasate în eterul universal (ga- zul etheronic) la distanță \(r_{AB} \) mai mare decât oricare din razele sferelor materiale considerate. De asemenea, vom presupune că \(r_{AB} < l_0 \approx \lambda_e \approx R \) astfel că potențialul de tip Yukawa să fie practic newtonian, adică împrăștiește etheronilor să fie neglijabilă.

Piecără dintre corpuri s-ar afla în echilibru hidrodinamic dacă ar fi singur în Univers, ca rezultat al compensării presiunii eterului exercitate din toate direcțiile spațiului, presupus izotrop și omogen. Forța hidrodinamică totală care acționează asupra unui eteron este chiar forța lui Pascal,

\[
F_E = p_E \sigma_E = \frac{2}{3} \frac{k_\lambda^2 k_\phi^2 \lambda H^2}{\kappa_\gamma \kappa_\phi} \approx 10^{-73} N,
\]

(24)

care asigură echilibrul etheronului considerat față de fondul etheronie inconjurător. În prezența, însă, a unui alt corp, apare o decompensare produsă de acesta. Să presupunem că etheronul considerat apartine corpului A și să evaluăm decompensarea produsă de alt eteron care aparține corpului B. Întrucât considerăm \(r_{AB} < l_0 \approx R \), ecranarea mutuală a perichiei de etheroni considerate rezultă geometric

\[
\delta F_E = - F_E \frac{d\Omega}{4\pi} = - F_E \frac{\pi (2r_E)^2}{4\pi r_{AB}^2} = - F_E \frac{\sigma_E}{4\pi r_{AB}^2}.
\]

(25)

Forța lui Newton dintre cele două corpuri (A, B) va fi rezultatul tuturor ecranărilor etheronilor corpului A de către etheronii corpului B (și invers), adică

\[
F_{AB} = N_A N_B \delta F_E = - G \frac{M_A M_B}{r_{AB}^2},
\]

unde constanta lui Newton are expresia (17) iar masă corpurilor (A, B) este

\[
M_{A,B} = \left(\frac{2}{3} \right)^{1/2} \frac{k_\lambda^2 k_\phi^2}{(\kappa_\gamma \kappa_\phi)^{1/2}} \frac{\lambda H}{c^2} N_{A,B}.
\]

(27)

Să analizăm această expresie a masei, înlocuind valorile constantelor adoptate (10)

\[
M_{A,B} = \frac{1}{2\pi \sqrt{3}} m_e N_{A,B} = m_e N_{A,B} - \left(1 - \frac{1}{2\pi \sqrt{3}} \right) m_e N_{A,B}.
\]

(28)

Rezultă de aici că raportul dintre energia de legătură per eteron, \(E_{\text{E}} \), și energia etheronului liber este extrem de mare și anume

\[
\frac{E_{\text{E}}}{m_e c^2} = 1 - \frac{1}{2\pi \sqrt{3}} = 0.908,
\]

(29)

fapt calitativ confirmat prin stabilitatea excepțională a unor particule elementare\(^3\). Pe de altă parte, energia de legătură este proporțională cu

\(^3\) Din (29) ar rezulta că circa 90,8% din masa constituențelor unui nucleon este anihilată, obținindu-se astfel un cupaj foarte tare.
numărul de constitvenți N_{AB}, dezvăluind astfel un caracter de saturare, fapt de asemenea în acord cu proprietățile cunoscute ale forțelor infranucleare [22]. Desigur, nu ne așteptăm ca să deducem în mod sistematic structura și proprietățile materiei la nivelul infranucleonic dintr-o presupunere cosmologică (existența eteronului) de interes pentru gravițație.

Totuși, dacă consecințele microscopic ale acestei presupuneri sint consolide cu trăsăturile principale ale interacțiilor infranucleonice, faptul este, într-o oarecare măsură, învățătoare.

Mai departe vom investiga interacția gravitațională a două nuclei. Procedind exact ca mai sus, obținem $F_{AB} = -Gm_AM_B/r_{AB}^2$, unde $M_{AB} = Km_B N_{A,B} = Km_B (N_{A,B}^{pB} n_p + N_{A,B}^{nB} n_n) - m_B N_{A,B}^{pB} + m_B N_{A,B}^{nB}$. Aici $K = (2/3)^{1/2} k s/(k_B k_B)^{1/2}$ iar noile notării reprezintă $N_{A,B}^{pB}$ și $N_{A,B}^{nB}$, numărul de protoni în nuclei A, respectiv B; $N_{A,B}^{nB}$, numărul de neutroni în aceleași nuclei; n_p, n_n, numărul de eteroni care constituie un proton, respectiv un neutron. $N_{A,B}$ inclă înseamnă numărul total de eteroni din corpul (aici nuclee) A, respectiv B, dar $M_{A,B}$ nu mai reprezintă masele nucleiilor—deoarece nu mai incluze masele lor de legătură. Această dificultate poate fi ocolită observind că forțele nucleare, avind un caracter de saturare, masele de legătură sint proporționale cu numerale de nuclei. De fapt, în prezența materiei nucleare, masa unui nucleon nu este m_p, ci $m_p [1 - (8/939)]$, astfel că, în mod corespunzător, masa unui nucleu nu este $M_{A,B}$ ci $M_{A,B}^* = M_{A,B} [1 - (8/939)]$. Introducând o nouă constantă $G^* = G [1 - (8/939)]^{-2}$, putem acum să scriem legea macroscopică a forței newtoniene.

$$F_{AB} \approx -G^* M_A^* M_B^* r_{AB}^{-2},$$

unde, de această dată, $M_{A,B}^*$ sint masele corpului și noua constantă G^* trebuie identificată cu constanta lui Newton propriu-zisă. Aproximații și mai bune pentru mase pot fi făcute folosind cunoscute expresie a lui Weissacker; la nivelul de precizie al acesteia, determinarea constantei de gravitație din legea lui Newton a forței conduce la valori ușor dependente de natura materialului folosit în experiențe. Stadiul actual al tehnici experimentale nu permite însă testarea, pe această cale, a ipotezei eteronice. Dacă identificăm constanta lui Newton cu G^*, și nu cu G, atunci urmează că interacția gravitațională dintre doi nuclei, conform modelului eteronic, este mai slabă cu factorul $[1 - (8/939)]^{-2}$ decât valoarea din teoria cimpului, care presupune un cupaj universal pentru gravițație. Nici această posibilitate nu este potrivită pentru dovada experimentală cu echipamentul actual.

Mersul mai departe, de la nuclee la corpuri macroscopic (cu structură atomică și moleculară), nu prezintă nici o dificultate, eroare fiind, oricum, mai mică decât cele deja făcute la estimarea masei nuclele.

3. CONCILIAREA CU ALTE TEORII ALE GRAVIȚAȚIEI

Mai sus am menționat eteletul ca un fluid universal, răspândit predominant în tot Universul și fiind, în multe privințe, similar cu fluidele obișnuite. În consecință, am făcut unele raționamente statistice și am dat o interpretare statistică constantei lui Newton, G, și constantei lui Hubble, H. Pe de altă parte, proprietățile deosebite ale eteletului față de gazele obișnuit
nuite an fost concretizate în caracterul ultrarelativist al gazului etheronic \[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} = -\frac{8\pi G}{c^2} \left(\frac{\hbar H}{c^2} \right) n_{\nu} \delta_{\alpha\mu} \delta_{\sigma\nu}. \] (30)

Aceasta reprezintă o versiune modificată a ecuației lui Einstein [27], compatibilă cu formulele (4–9), cu constantele (10) și cu condiția \(\Lambda = 1/R^2 \) în acest mod, constantă lui Hubble, \(H \), capătă statutul unei veritabile constante.

Transiția de la modelul static la cel dinamic (de Univers în expansiune), dacă este necesară, trebuie astfel efectuată încât să păstreze acest caracter de constantă veritabilă pentru \(H \). Mai precis, aceasta înseamnă că modelul care ar conduce la o legi de expansiune \(R(t) = R(t_0) \times \exp[H(t - t_0)] \) este preferabil față de modelul pentru care \(H \sim 1/t \). În acest scop, pentru viitor rămâne mai departe de învestigat proprietățile colective ale eterului pină la obținerea unui set de ecuații hidrodinamice relativiste care să exprime fenomenele fundamentale ca expansiunea Universului, propagarea micelor perturbații transversale cu viteza luminii, stabilitatea, spinul și sarcina particulelor.

În absența unei astfel de teorii, vom presupune în mod tentativ valabilitatea următoarei ecuații hidrodinamice simple de tip Navier

\[m_v n_{\nu} \left(\frac{\partial}{\partial t} + v_{\nu} \cdot \nabla \right) v_{\nu} = -\nabla p_{\nu} + f \] (31)

unde \(p_{\nu} = (1/3) n_{\nu} m_v c^2 \) iar forța de frecare, \(f \), are forma cea mai simplă posibilă, \(f = -C n_{\nu} v_{\nu} n_{\nu} v_{\nu} \). Introducând în ecuația (31) expresia presiunii și a forței de frecare, exprimând \(v_{\nu} \) prin \(H \) și considerând \(n_{\nu} = c \), se obține ecuația simplă

\[\frac{\partial n_{\nu}}{\partial t} + \frac{H}{c} n_{\nu} = 0, \] (31')

unde am ales valoarea constantei \(C = \pi \sqrt{2/3} \) astfel ca să obținem legea relativistă a deplasării cosmologice spre roșu. Astfel, considerind și fotona constituit din etheron (în transiție), energia fotoniului este \(E_f = \hbar \omega \sim n_{\nu} m_v c^2 \), astfel că din (31') rezultă cunoscuta lege de deplasare spre roșu a lui Hubble

\[\frac{d\omega}{c\omega} = -\frac{H}{c} dt = -H dt \] (32)
În cadrul modelului etheronic se poate concepe o generalizare a acestei legi în forma \((1/E) \frac{dE}{dt} \leq -H \) pentru orice fel de agregate etheronice de energie totală \(E = h\omega = mc^2 \). Modul de explicație a acestei legi, schițat mai sus, este similar cu acela din modelul de Univers al lui De Sitter, în care proprietățile geometrice ale spațiului-timpului sint de asemenea determinate de eter (introduși cu constanta cosmologică) [5].

O altă legătură interesantă a modelului etheronic se poate face cu teoria gravitației a lui J.L. Synge [19]. Conform acestei teorii, legea forței de gravitație a lui Newton se deduce considerînd că cele două corpuri schimbă reciproc cuante care se propagă cu viteză luminii. Rezultă de aici că energia potențială a sistemului de corpuri este egală cu energia cuantelor aflate în tranzit. Pentru atracție, este necesar să se presupună o valoare negativă a masei cuanțelor. Prin transpoziție logică, cuantele de masă negativă pot fi interpreteate în cadrul modelului etheronic, ca o lipsă de eteroni, datorită ecranării reciproce a corpurilor. Observăm că ceea ce se obține efectiv în abordarea lui Synge este numai proporționalitatea \(F \sim -1/r^2 \). De aici, deducerea completă a forței lui Newton, mai este nevoie de următoarele afirmații: 1) capacitatea de emisie etheronică, \(C_{Em} \), a unui corp este egală cu capacitatea sa de absorbtie \(C_{Abs} \); 2) capacitatea de emisie este proporțională cu numărul de eteroni conținut în corp; 3) numărul de cuante (etheroni) emis este proportional cu capacitatea de emisie a corpului emițător și cu capacitatea de absorbtie a corpului absorbant. Prin urmare, energia potențială a sistemului de două corpuri \((A, B)\) se scrie:

\[
U_{AB}(r) = \sum_{transit} E_E \sim (C_{A}^{Em} C_{B}^{Abs} + C_{B}^{Em} C_{A}^{Abs}) \sim (C_{A}^{Em} C_{B}^{Em} + C_{B}^{Em} C_{A}^{Em}) \sim C_{A}^{Em} C_{B}^{Em} \sim N_A N_B M_A M_B.
\]

În acest mod ipoteza etheronică poate completa demonstrația lui Synge, conducind în final la legea lui Newton a forței gravitaționale, cu condiția ca orice corp mai material să fie constituționat din etheroni.

O conjectură atât de temerară ca ipoteza etheronică poate ridica multe și dificile probleme privind, de exemplu, mișcarea unui mare număr de etheroni într-un nucleon. Design, atunci când vorbim de „partonii” în loc de „etheroni” problemele nu sint prin nimic simplificate, în prezent neexistă o soluție satisfăcătoare. Un model adecvat ar trebui să explice sarcina și spinul că pe o consecință hidrodinamic-statistică a mișcării colective a constituenților particulei. Poate chiar teoriei relativității va trebui reformulată în acest sens pe baze statistice, așa cum este schițat într-o lucrare recentă a lui J.C. Aron [28].

În ceea problemelor serioase ridicate de ipoteza etheronică, posibilitățile de explicare parțială discutate mai sus, ca și legăturile sugerate dintre fenomenele fizice care au loc la nivele cosmice și infranuagare, sint tentante și chiar încurajatoare pentru acest model, ca o cale posibilă către un tablou mai unitar al lumii fizice. Dacă această cale se va dovedi valabilă, atunci gravitația — această încă atit de puțin cunoscută interacție — va juca un rol mai important decit se presupune în prezent. Creșterea interesului în ultima decadă pentru conceptul de eter ar putea fi o indicatie în acest sens.
5. CONCLUZII

Se dă o nouă explicație a legii lui Newton pentru gravitație pe baza următoarelor aserții: a) Universul este finit și umplut cu particule de masă infimă care se deplasează haotic cu viteza luminii; b) toate corpurile materiale din Univers sînt constituite din ăstri de particule, denumite „etheroni”; c) materia din Univers se află în mod preponderent în formă de eteroni liberi; d) mecanismul hidrodinamic al lui Lesage pentru interacția gravitațională este valabil, fondul cosmic fiind eterul format din eteroni. Principiul de incertitudine al mecanicii cuantice și o serie de relații adimensionale din cosmologia relativistă — între care și principiul lui Mach — sînt folosite pentru a stabili proprietățile întrinsece ale etheronilor ca și numărul lor din Univers. Aplicînd raționamente statistice fondului lui (fluidului) eteronic, sint deduse expresii pentru constanta lui Newton și constanta lui Hubble în funcție de entități cinetice legate de eter. Deducerea legii forței de gravitație determină totodată un cuplaj foarte tare al etheronilor în nucleon și un caracter de saturare al forțelor de legătură. Se face o amplă discuție asupra consistenței tabloului lumii fizice, sugerată de ipoteza eteronică, cu cadrul deja constiituit al fizicii convenționale, trăgîndu-se concluzii interesante și încurajătoare.

Autorul este îndatorat colegului dr. Nicolae Ionescu-Pallas pentru amabilitatea de a discuta critic întreaga problemă și pentru ajutorul său în elucidarea multor aspecte speciale. Autorul mulțumește de asemenea profesorilor Ioan Gottlieb și Liviu Sofonea și lui Andrei Dorobanțu pentru apreciere și asistență morală, ținătorului fizician Silviu Olariu pentru discuții stimulatoare, precum și tuturor celor care, într-un fel sau altul, au manifestat interes față de această lucrare.

ADDENDA

1. În monografia recentă a lui J. Heidmann, dedicată cosmologiei relativiste (Springer Verlag, 1980), este confirmată aplicabilitatea relației de incertitudine \(\delta E \delta t \approx h \) la întregul Univers dacă \(\delta t \approx H^{-1} \); desigur, aceasta implică existența unei cuante de energie a cărei masă este \(m = \hbar H/c^2 \).

2. În lucrarea lui L.S. Mayants, „On the existence of zero rest mass particles” (Found. Phys., 11, 577 (1981)) este argumentată concepția interesantă conform căreia cimpul electromagnetic este înlocuit cu un gaz de particule, denumite „emons”, cu masă de repaus infimă dar nenulă \(m < 10^{-40} \text{kg} \). Se arată că existența emonilor nu contrazice teoria relativității restrînse, confirmînd ipotezele mai vechi ale lui Louis de Broglio privitoare la fotonii masivi [5, 15]. Considerațiile teoretice ale lui Mayants sînt, într-o oarecare măsură, similare cu ideile expuse în prezentă lucrare — exceptînd faptul că ele se referă la electromagnetism și nu la gravitație.

3. Criticînd acum cîteva luni teoria cosmologică Big Bang, Fred Hoyle preținde că mărimea epocii cosmologice \(t \approx H^{-1} \) ar fi prea mică pentru a justifica informația extrem de mare îmmagazinată în ființele superio ror organizate (circa \(10^{49} \text{moduri specifice în care } \approx 2000 \text{ de gene pot fi construite din } \approx 10^{26} \text{lanțuri de nucleotide} \). După părerea lui Hoyle, pro-
cesul evolutiv care să conducă la apariția vieții inteligente ar necesita mai multe epoci cosmologice Hubble. Dacă această critică se va dovedi realistă, atunci interpretarea constanței lui Hubble ca o constantă pură, și nu ca „1/Virsta Universului”, va căpăta un suport neașteptat.

POST SCRIPTUM. După trimiterea lucrării la publicare, autorul a continuat discuțiile începute la Timișoara, între alții cu colegul său Arțin Corciovei. În urma acestor discuții autorul a considerat că ar fi nimerit să se expună pe scurt într-un post scriptumcriticiile formulate. Arțin Corciovei a fost de acord cu această procedură și a transmis autorului unele din obiecțiile formulate. Ele sunt cuprinse în textul care urmează.

În prezenta lucrare este introdus conceptul de eteron, ca fiind cea mai mică particulă care poate exista și care mediază interacțiunile gravitaționale. În vederea calculării masei acestei particule universale se sugerează trei căi de abordare. Se consideră pentru unele aspecte ale problemei că universul ar fi static, dar de fapt vor trebui folosite modele de univers dinamic. Se vor discuta cele trei căi de abordare în vederea obținerii masei eteronului.

1. Se consideră relațiile de neadese pentru care lui Heisenberg aplicabile la scara universului întreg și se echivalază incertitudinea de timp cu virsta universului. Se consideră că incertitudinea în energie reprezintă cuvânta minimă ce poate fi schimbată între părți ale universului. Masa asociată acestei cuvânt minime se consideră ar fi masa eteronului. Pentru a se obține valoarea \(m_e = \frac{\hbar H}{c^2} \) autorul este obligat să ia virsta universului egală cu \(1/H \), \(H \) fiind constanta lui Hubble, ceea ce revine la ipoteza unui univers care s-a dilatat linear în timp. Se observă că ipoteza universului dilatat liniar în timp conduce la considerarea vitezii unei anumite galaxii (de ex. față de Soare) constantă, dar cum distanța acestei galaxii față de altă galaxie (în particular față de Soare) crește linear în timp, „constantă” \(H \) scade linear în timp. Deci masa eteronului ar scădea și ea linear și eteronul ar avea în anul 2000 p.d. o masă ceva mai mică decât pe timpul lui Democritos. Însă toate particulele cunoscute ar fi masea fixă. Deci ipoteza masei variabile a eteronului ar echivala cu crearea continuă de eteroni într-un electron, pentru a păstra fixă masa electronului.

2. Se consideră întregul univers ca avind o mișcare oscilantă. Se echivalază pulsiația \(\omega \) a universului cu constanta lui Hubble. Se consideră că stările universului sunt caracterizate prin energiile quantificate ale oscilatorului armonic cu pulsiația \(\omega \). Spectrul este practic continuu, diferența între nivele \(\hbar \omega \) furnizând energia celei mai mici cuante permise, eteronul. Se reobține \(m_e = \frac{\hbar H}{c^2} \). Evident ipoteza că universul este oscillant în timp contrazice primă ipoteză care revine la un univers linear în timp. De asemenea, este contrazisă ipoteza universului static.

Să comentăm puțin ipoteza că universul este oscillant în timp. Să scriem de exemplu \(R(t) = R_0 |\sin \omega t| \) pentru dependența față de timp a distanței (față de Soare) a unei galaxii. La virsta actuală \(T \) a universului
\[R(t) = R_0 \left(\frac{\cos \omega T}{1 + \sin \omega t} \right) \]

Constanta lui Hubble este \(\omega = H \) si observam că pentru a obține \(\omega = H \) ar trebui să ne găsим la un moment \(T \) extrem de particular \(HT = \pi/4 \). Oare virsta universului satisface o relație atât de particulară? În fine dacă s-ar lua \(R(t) = R_0 (1 + \sin \omega t) \) o soluție posibilă pentru ca \(\omega = H \) ar fi chiar \(T = 0 \).

Cu alte cuvinte ipoteza echivalării \(\omega = H \) este extrem de particulară.

În fine se consideră raza universului ca raza maximală de interacțiune gravitațională. Analog cu potențialul folosit pentru forțele nucleare se poate introduce un potențial de tip Yukawa pentru potențialul gravitațional și anume \(- \frac{e^{-r/c}}{r} \). \(R \) fiind raza universului. Se echivalează raza universului cu lungimea Compton asociată cuantei de gravitație, etheronului, \(\lambda = \frac{h}{mc} \). Se ia \(R \) egal cu \(cH \) deși nu s-au observat depășiri Doppler ale vreunor galaxii la care să corespundă viteză chiar egală cu c. Rezultă \(m_e = \frac{hH}{c^2} \). Oricum ipoteza că galaxiile de la marginea universului se deplasează cu viteză \(c \) contravine ipotezei universului static.

Este de remarcat că în cele trei căi de abordare a problemei se presupun modele contradictoare de evoluție a universului, inclusiv față de modelul static acceptat în vederea preluării relației \(GM/c^2R = \pi/2 \) (ori în modelul static \(H \) nu are sens).

În fine, ar fi de întrebat care sunt faptele experimentale stringente care au condus la necesitatea noii particule, etheronului și care sunt celelalte caracteristici ale ei (spin, sarcină, alte numere cuantice interne).

Se pot forma și observații de amânunț. Se dă numai un exemplu. Astfel în expresia ecuațiilor de cimp ale lui Einstein (formula 30) se presupune anularea presiunii obișnuite (rămâine numai presiunea cosmologică) iar în formula următoare se presupune că etheronul are viteză luminii, caz în care presiunea este maximă.

Autorul lucrării speră că prezentarea unor astfel de critici cum sint cele de mai sus permit sensizarea problemei din unghiuri și din poziții diferite.

BIBLIOGRAFIE

REMARKS OF THE EDITOR

In both Popescu’s articles, the original and the translated one, it is strengthened that etherons can move at the speed of light (or almost).

Does this mean they **CAN** move with the speed of light or do they **always move or vibrate with the speed of light**?

I understand that a particle as small as it is can move fast, but is there any reason why they **should** move at all, except vibration?

In a steady state (vibration) situation they can transfer electromagnetic vibrations of light or other radiations. This explains also why there are no radiations with wave-lengths shorter than 10^{-15} m, the average distance between etherons.

QUESTIONS

Although etherons are predicted to fill up the Universe, there remain a number of questions:

- Why are they moving in a chaotic way?
- What are the forces between them?
- Can they be detected by the CERN in the same way as for example the X-particles?
- And what are the functions of etherons.

For some of these questions the editor refers to his booklet *Einstein’s cosmic ether, the atomic ether, their etherons and our mind*, which is also published with Create Space.

In this booklet the role of etherons within the Universe and atoms concerning gravity, electromagnetic radiation (light, TV, radio, telephone) and mind is elaborated.