

CERN Experiment	NA62
Project Title	Study of rare kaon decays at the CERN SPS

Main Objective:

 $BR(K^+ \rightarrow \pi^+ \nu \ \overline{\nu})_{exp}$

10 % precision measurement → O(100)_{sM} events in 2 years of data taking

1st NA62 Physics Test RUN: Oct.-Dec. 2014

The NA62 Experimental setup

 $BR(K^+ \to \pi^+ \nu \overline{\nu})_{SM} = (7.8 \pm 0.8) \times 10^{-11}$

- \checkmark SPS extracted beam: 1.1 x 10¹² protons (400 GeV/c)
- \downarrow Be target \rightarrow 75 GeV/c secondary beam (1% res.)
- ↓ **750 MHz** hadron beam (p, π^+ , ~ 6% K⁺)
- \rightarrow 45 x 10⁶ K⁺

10% acceptance \rightarrow 4.5 x 10⁶ K⁺ decaying in-flight

- ✓ accurate kinematic reconstruction
- ✓ precise timing
- ✓ efficiency of the vetoes
- ✓ excellent particle identification

Signal and Background

Signal: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ P_K $P_{\pi} \theta_{\pi K}$ P_{ν}

Kinematic variable $m_{miss}^2 \coloneqq (P_K - P_\pi)^2$

Background:

1) Other $K^{\scriptscriptstyle +}$ decay modes:

K ⁺ main decays	BR
$K^+ o \mu^+ \nu$	0.6355
$K^+ \to \pi^+ \pi^0$	0.2066
$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559
$K^+ \to \pi^0 e^+ \nu$	0.0507
$K^+ \to \pi^0 \mu^+ \nu$	0.0335
$K^+ \to \pi^+ \pi^0 \pi^0$	0.0176
$K^+ \to \pi^+ \pi^- e^+ \nu$	4.257×10 ⁻⁵

2) Accidental single track matching with a K-like one

Background rejection:

Kinematic reconstruction (m^2_{miss}) combined

with PID and VETO

IFIN-HH expected contribution

- $K^+ \rightarrow \pi^+ \pi^- \pi^-$ rejection \rightarrow Read-Out for the "new" Hadronic Sampling Calorimeter (HASC)
- TDAQ system high level trigger (L1/L2) software development

IFIN-HH Team (2014): Dr. A.M. Bragadireanu, Dr. D. Pietreanu, Dr. M.E. Vasile

Hadronic Sampling Calorimeter

9 Modules salvaged from an NA61 prototype (NIM A598(2009)268–269)

Module specs.

10x10x160 cm3 (WxHxL);
120 tiles (lead/scintillator), sampling 4:1;
WLS fibers embedded in the scintillator

10 sections with 6 fibers/section;

- 10 optical read-out connectors (designed for 3x3 mm² MAPD).

After multiplicity & kinematical cuts there are still 10 ± 4 events/year surviving (S. Balev – NA62 Monte Carlo)

HASC Read-Out evaluation

July

Oct.

HASC Read-Out evaluation (cont.)

2 data files/run : -TDC data; -Digitizer waveforms – for off-line Digital Pulse Processing (DPP);

Software development of custom DPP code: Pk. detect, ToT, Timing, Charge Integration

DPP of SiPM signal

Planning 2014 / 2015

2014 SPS schedule

Beam test during NA62 Pilot Run (18 November – 5 December 2014)

Install one HASC module near the beam pipe at $z \approx 253-254$ m

- Test all the IFIN amplifiers (Gain = 2.7, 4.2 and 7.7) and record analog outputs with a 12bit@5GS/s digitizer;
- Rate measurement;

<u>2015</u>

Full HASC assembly & commissioning

- <u>min. 90 RO channels</u>: amplifier boards, 360 ToT channels, TEL62, crates;
- implementation of one of the integral methods in the TEL62 FPGA;
- L1/L2 algorithms for the HASC charge integral and timing;
- staged <u>installation and commissioning at CERN</u>.

High level trigger software development for other NA62 sub-detectors; Shifts during the NA62 physics runs.