

CERN Experiment	NA62
Project Title	Study of rare kaon decays at the CERN SPS

NA62 Goal

• We aim to measure with 10 % (or better) the

```
BR (K<sup>+</sup> \rightarrow \pi^+ \nu \ \overline{\nu})
```

with in-flight decaying kaons

• State of the art:

Decay	Branching Ratio (x 10 ⁻¹⁰)	
	Theory (SM)	Experiment
$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$	0.911±0.072 ^[1]	$1.73^{+1.15}_{-1.05}$ [2]

 [1] A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens arXiv:1503.02693
[2] A.G. E707/E040 PDI 101 (2000) 101002 Ni 0000 2450

[2] AGS-E787/E949 PRL101 (2008) 191802, arXiv:0808.2459

Signal and Background

Background:

1) Other K^+ decay modes:

K ⁺ main decays	BR
$K^+ \to \mu^+ \nu$	0.6355
$K^+ \to \pi^+ \pi^0$	0.2066
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.0559
$K^+ \to \pi^0 e^+ \nu$	0.0507
$K^+ \to \pi^0 \mu^+ \nu$	0.0335
$K^+ \to \pi^+ \pi^0 \pi^0$	0.0176
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	4.257×10 ⁻⁵
2) Accidental single	track matching
with a K-like one	

Background rejection:

Kinematic reconstruction (m_{miss}^2) combined with **PID** (cherenkov) and **VETO** (calorimetry)

The NA62 Experimental setup

- \checkmark SPS extracted beam: 1.1 x 10¹² p (400 GeV/c)
- ↓ Be target → 75 GeV/c secondary beam (1% res.)
- \downarrow **750 MHz** hadron beam (p, π^+ , ~ **6% K**⁺)
- \rightarrow 45 x 10⁶ K⁺

10% acceptance \rightarrow 4.5 x 10⁶ K⁺ decaying in-flight

- ✓ Accurate kinematic reconstruction
- ✓ Precise timing
- \checkmark efficiency of the vetoes
- ✓ excellent particle identification

NA62 Experiment in ECN3

NA62 Hadronic Sampling Calorimeter (HASC)

Hamamatsu 3x3 mm² MPPC (model:S12572-015C)

- 40.000 pixels;
- 3x10⁵ @ 69V (typ.)

NA62 LAV FEE, JINST 8 C01020

Detect 1 π^+ from $K^+ \to \pi^+ \pi^+ \pi^-$ when:

- the K+ and one π^+ are identified;
- π^- undergoes hadronic interaction in the 1st STRAW;
- the other π^+ (~40 GeV/c) through beam pipe, emerging at z > 253 m;
- ✓ 9 Calorimeter Modules salvaged from an NA61 prototype

IFIN-HH team responsible with:

- building of HASC Read-Out system;
- installation, maintenance & operation of HASC;
- ✓ 3x3 mm2 MPPC, front-end electronics together with Time over Threshold(s) method were validated with cosmic rays;
- Beam test anticipated in the last ISAB CERN-RO meeting.

Rd.Out	SipM Vn [V]	SiPM Gain	Amp. Gain
10	67.94	2.29E+05	2.6
9	67.9	2.30E+05	4.2
8	68.03	2.31E+05	7.7
7	67.49	2.32E+05	2.6
6	67.48	2.29E+05	4.2
5	67.83	2.30E+05	7.7

SiPM10 – scaler data

Beam structure:

- Spill length ~ 4.8 s
- Extraction: 14, 22 s cycle

SIPM (8 & 9) – scaler data

Spill structure:

- 50 Hz modulation;
- From FFT there is also a 75 Hz component

m.i.p. (μ - beam halo) signal

<u>Rate Evaluation (typ. sample):</u> Beam intensity @5% from nominal Scaler readings: 3x10⁶ Duration: 611392643 us (PC clock)

<u>Single</u> SiPM 10: 9.7 KHz SiPM 9: 18.6 KHz SiPM 8: 97.5 KHz <u>Coincidence</u> 8.and.9.and.10 : 3.4 KHz 8.and.9: 17.4 KHz

Test conclusions:

- G=7.7
- @ Nominal beam intensity we expect rates of up to 2 MHz /ch. for low thresholds

HASC Read-Out Construction

100 3x3 mm² MPPC sensors received from Hamamatsu (March)

- ✓ MPPC sensors tested individually;
- ✓ grouped according to the nominal bias voltage; 10 MPPC's/ HASC module;
- ✓ advantage: 10 HV channels instead of 90
- HV +LV distribution box solution

Gain "dilemma"

- Gain 4 is maintaining a high dynamic range for the TOT input;
- Gain 7 is providing a better approximation of signal tails, at low amplitude, with two ToT hardware thresholds;
- Solution: final design with Gain 7 and use (if needed) the Vcc for gain tuning.

HASC Read-Out Construction (April-August)

Amplifier board (100 pc's)

HV and LV distribution board (10 pc's)

Analog splitter for ToT boards (14 pc's)

Support for sensor and amplifier board(100 pc's)

HASC Read-Out Construction (April-August)

Assembled amplifier boards

HV and LV distribution box

Amplifier test setup

HASC Module Read-out – full assembly test

HASC Read-Out Assembly at CERN (September)

Module front plate dismounting for bolts exchange

HASC platform together with 1st calorimeter module

HASC Read-Out Assembly at CERN (September)

HASC modules with front-end electronics

HASC Status (November)

- 8 HASC modules are ready (in ECN3) for read-out
- The Time-over—Threshold boards produced by Artel srl. (Italy) arrived (5 Nov.) with 3 weeks of delay
- The Read-out system is incomplete due to the unavailability of TDC mezzanines (INFN Pisa will produce 10 new TDCB mezzanines until the end of 2015)

- HASC control system software under development (prototype ready)
- Integration in the NA62 DCS planned for the beginning of 2016

- Background suppression for events with more than 1 charged particle in the final state
 - $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
 - secondary beam interaction with the material along the beam pipe

- Shorter time scale (suitable for master thesis):
 - o geometrical alignment of the STRAW spectrometer
 - inclusion of the full magnetic field in the track fitting procedure
 - \circ single-photon detection efficiency of the LKr calorimeter

Planning 2015, 2016

- Nov.-Dec. 2015 Testing of ToT boards; HASC DCS; HASC model building (outreach)
- Dec. 2015 NA62MC, Reconstruction and Analysis training at CERN
- Dec. 2015 NA62 Collaboration Meeting (CERN)

Year		2016		
Quarter	1	2	3	4
HASC assembly & commissioning				
Development of HASC firmware for TEL62 FPGA				
L1/L2 algorithms				
Integration of HASC in NA62 TDAQ and DCS				
Shifts				

The Team + friends support

Name	Position
Alexandru-Mario BRAGADIREANU	Physicist (CS III) – IFIN-HH
Valeriu-Florin COTOROBAI	Physicist (CS III) – IFIN-HH
Stefan-Alexandru GHINESCU	Technician – IFIN-HH, Student (Physics)
Ovidiu-Emanuel HUTANU	Engineer - IFIN-HH, Master Student (Electronics)
Dorel PIETREANU	Physicist (CS III) – IFIN-HH (left the group in February 2015)
Victor-Radu VOICU	Engineer - IFIN-HH, Student (Physics)

Special thanks to our colleagues and friends: Michele Renda and Calin Alexa