Superfluidity and Superconductivity in Compact Stars

Nicolas Chamel

Institute of Astronomy and Astrophysics
Université Libre de Bruxelles, Belgium

NewCompStar School, Bucharest, 20-25 September 2015
Part 2: Superfluidity and superconductivity in neutron stars
Electron superconductivity in neutron stars

The surface layers of non-accreting neutron stars are mostly composed of iron.

Iron is superconducting at density $\rho \approx 8.2 \text{ g cm}^{-3}$ with $T_c \approx 2 \text{ K}$, much lower than neutron-star surface temperatures.

Shimizu et al., Nature 412, 316 (2001).
Electron superconductivity in neutron stars

The surface layers of non-accreting neutron stars are mostly composed of iron.

Iron is superconducting at density \(\rho \approx 8.2 \text{ g cm}^{-3} \) with \(T_c \approx 2 \text{ K} \), much lower than neutron-star surface temperatures.

Shimizu et al., Nature 412, 316 (2001).

In the deeper layers of neutron stars at densities \(\rho \gtrsim 10^4 \text{ g cm}^{-3} \), atoms are fully ionised. Electrons can be treated as a Fermi gas:

\[
\rho \gtrsim \frac{m_e}{\hbar^2} \frac{3}{4\pi n_e} \]

Ceperley and Alder, PRL45, 566(1980).

\[
rs \equiv d/a_0 \\
a_0 \equiv \frac{\hbar^2}{m_e e^2} \\
d \equiv \left(\frac{3}{4\pi n_e} \right)^{1/3}
\]

In ordinary metals

\(rs \approx 2 - 6 \)

In neutron star crust

\(rs \approx 10^{-5} - 10^{-2} \)
The critical temperature of a uniform non-relativistic electron gas in a background of ions (jelium) is given by (T_{pi} is the plasma temperature)

$$T_c = T_{\text{pi}} \exp \left(-\frac{8\hbar v_{Fe}}{\pi e^2} \right) \Rightarrow T_c \propto \exp \left(-\zeta \left(\frac{\rho}{\rho_{\text{ord}}} \right)^{1/3} \right)$$

with $\rho_{\text{ord}} = m_u / (4\pi a_0^3 / 3)$.

Therefore T_c decreases with increasing density.
Electron superconductivity in neutron stars

The critical temperature of a uniform non-relativistic electron gas in a background of ions (jelium) is given by (T_{pi} is the plasma temperature)

$$T_c = T_{\text{pi}} \exp \left(-8\hbar v_{Fe}/\pi e^2 \right) \Rightarrow T_c \propto \exp(-\zeta (\rho/\rho_{\text{ord}})^{1/3})$$

with $\rho_{\text{ord}} = m_u/(4\pi a_0^3/3)$.

Therefore T_c decreases with increasing density.

At densities above $\sim 10^6 \text{ g cm}^{-3}$, electrons become relativistic $v_{Fe} \sim c$ so that ($\alpha = e^2/\hbar c \simeq 1/137$)

$$T_c = T_{\text{pi}} \exp \left(-8/\pi \alpha \right) \sim 0$$

Electron superconductivity in neutron stars

- The critical temperature of a uniform non-relativistic electron gas in a background of ions (jelium) is given by (T_{pi} is the plasma temperature)

$$T_c = T_{pi} \exp \left(-\frac{8\hbar v_{Fe}}{\pi e^2} \right) \Rightarrow T_c \propto \exp \left(-\zeta \left(\frac{\rho}{\rho_{ord}} \right)^{1/3} \right)$$

with $\rho_{ord} = m_u/(4\pi a_0^3/3)$.

Therefore T_c decreases with increasing density.

- At densities above $\sim 10^6$ g cm$^{-3}$, electrons become relativistic $v_{Fe} \sim c$ so that ($\alpha = e^2/\hbar c \simeq 1/137$)

$$T_c = T_{pi} \exp \left(-\frac{8}{\pi \alpha} \right) \sim 0$$

Electrons in neutron stars are not superconducting.
Nuclear superfluidity and superconductivity

The implications of the BCS theory (published in January 1957) for atomic nuclei were first discussed by A. Bohr, B. R. Mottelson, and D. Pines during the Summer of 1957.

Nuclear superfluidity and superconductivity

The implications of the BCS theory (published in January 1957) for atomic nuclei were first discussed by A. Bohr, B. R. Mottelsson, and D. Pines during the Summer of 1957.

A. Bohr, B. R. Mottelsson, and D. Pines speculated that nuclear pairing might explain the *energy gap* in the excitation spectra of nuclei.

Phys. Rev. 110, 936 (1958)

They also anticipated that nuclear pairing could explain *odd-even mass staggering, and the reduced moments of inertia* of nuclei.
Nuclear superfluidity and superconductivity

The implications of the BCS theory (published in January 1957) for atomic nuclei were first discussed by A. Bohr, B. R. Mottelson, and D. Pines during the Summer of 1957.

A. Bohr, B. R. Mottelson, and D. Pines speculated that nuclear pairing might explain the energy gap in the excitation spectra of nuclei.

Phys. Rev. 110, 936 (1958)

They also anticipated that nuclear pairing could explain odd-even mass staggering, and the reduced moments of inertia of nuclei.

There is however a fundamental difference between nuclei and electrons in solids: **nuclei contain a small number of particles.**

“the present data are insufficient to indicate the limiting value for the gap in a hypothetical infinitely large nucleus.” Bohr, Mottelson, Pines.
Before the discovery of pulsars in 1967, several superconductors were known but only ^4He was found to be superfluid (superfluidity of ^3He was discovered in 1972).

N.N. Bogoliubov, who developed a microscopic theory of superfluidity and superconductivity, was the first to explore its application to nuclear matter.

In 1959, Migdal predicted neutron-star superfluidity, which was first studied by Ginzburg & Kirzhnits in 1964.

Migdal, Nucl. Phys. 13, 655 (1959)

At low enough temperatures, nucleons may form pairs that can condense into a superfluid/superconducting phase.

Most attractive pairing channels ($\delta > 0$):
- 1S_0 at low densities
- 3P_2 at high densities

At low enough temperatures, nucleons may form pairs that can condense into a superfluid/superconducting phase.

Most attractive pairing channels ($\delta > 0$):
- 1S_0 at low densities
- 3P_2 at high densities

Microscopic calculations of pairing in homogeneous nuclear matter:
- diagrammatic methods
- variational methods
- quantum Monte Carlo methods.
Pairing in neutron matter: BCS

Lowest order approximation: BCS theory.

\[\Delta [\text{MeV}] \]

\[k_F [\text{fm}^{-1}] \]

Nijmegen I
Nijmegen II
Argonne v18
CD-Bonn
\(N^3\text{LO} \)

1\(^1S_0 \) pairing gaps are essentially independent of the NN potential, the role of the NNN potential is negligible.

3\(^3P_2 - ^3F_2 \) pairing gaps are very dependent on the NN and NNN potentials.

The 1S_0 pairing gaps are strongly suppressed by medium effects, and to a lesser extent by NNN forces.

At very low densities, the 1S_0 BCS pairing gap is reduced by a factor $(4 \exp(1))^{-1/3} \approx 0.45$.

The 3P_2 pairing gaps are also suppressed by medium effects, but are enhanced by NNN forces.

Dong et al., PRC87, 062801(R) (2013)
Baldo et al., PRC58, 1921 (1998)
Maurizio et al., PRC90, 044003 (2014)
Pairing in neutron star cores

The interior of a neutron star is not only made of neutrons, but consists of protons, leptons, hyperons, and possibly mesons, and even deconfined quarks.

Possible phases:

- \(^1\)\(^S\)\(^0\) and \(^3\)\(^P\)\(^2\) proton pairing
- neutron-proton pairing
- hyperon-hyperon pairing \((\(^1\)\(^S\)\(^0\) \Lambda \Lambda)\)
- hyperon-nucleon pairing \((\(^1\)\(^S\)\(^0\) n\Lambda, \(^1\)\(^S\)\(^0\) n\Sigma^-, \(^3\)\(^S\)\(^D\)\(^1\) n\Sigma^-)\)
- quark pairing (see Armen Sedrakian’s lecture)

Although \(^1\)\(^S\)\(^0\) proton superconductivity is well established, the other superfluid/superconducting phases have been much less studied.
Pairing in neutron star crusts

The neutron superfluid in the inner crust of a neutron star coexists with an assembly of neutron-proton clusters, which influence superfluidity.

Because of inhomogeneities, microscopic calculations based on realistic interactions are not feasible.

Phenomenological approaches:
- local density approximation
- semi-classical methods
- self-consistent “mean-field” methods
- beyond “mean-field” methods

All are based on the density functional theory.

Schuetrumpf et al., PRC87, 055805 (2013)

Chamel & Haensel, Living Rev. Relativity 11, 10 (2008)
http://www.livingreviews.org/lrr-2008-10
Nuclear energy density functional theory in a nut shell

The energy E is expressed as a functional of the “normal” and “abnormal” density matrices:

$$
n_q(r, \sigma; r', \sigma') = \langle \psi | c^\dagger_q(r' \sigma') c_q(r \sigma) | \psi \rangle,
\tilde{n}_q(r, \sigma; r', \sigma') = -\sigma' \langle \psi | c_q(r' - \sigma') c_q(r \sigma) | \psi \rangle,
$$

where $c_q(r \sigma)^\dagger$ and $c_q(r \sigma)$ are the creation and destruction operators for nucleon of type q ($q = n, p$ for neutrons, protons) at position r with spin σ ($\sigma = \pm 1$ for spin up and down).
Nuclear energy density functional theory in a nut shell

The energy E is expressed as a functional of the "normal" and "abnormal" density matrices:

\[
\begin{align*}
n_q(r, \sigma; r', \sigma') &= \langle \psi | c_q(r' \sigma') \dagger c_q(r \sigma) | \psi \rangle, \\
\tilde{n}_q(r, \sigma; r', \sigma') &= -\sigma' \langle \psi | c_q(r' - \sigma') c_q(r \sigma) | \psi \rangle.
\end{align*}
\]

where $c_q(r \sigma) \dagger$ and $c_q(r \sigma)$ are the creation and destruction operators for nucleon of type q ($q = n, p$ for neutrons, protons) at position r with spin σ ($\sigma = \pm 1$ for spin up and down).

In turn the density matrices can be expressed in terms of the quasiparticle wave functions $\varphi_{1k}^{(q)}(r)$ and $\varphi_{2k}^{(q)}(r)$ as

\[
\begin{align*}
n_q(r, \sigma; r', \sigma') &= \sum_{k(q)} \varphi_{2k}^{(q)}(r, \sigma) \varphi_{2k}^{(q)}(r', \sigma')^*, \\
\tilde{n}_q(r, \sigma; r', \sigma') &= -\sum_{k(q)} \varphi_{2k}^{(q)}(r, \sigma) \varphi_{1k}^{(q)}(r', \sigma')^* = -\sum_{k} \varphi_{1k}^{(q)}(r, \sigma) \varphi_{2k}^{(q)}(r', \sigma')^*.
\end{align*}
\]
The energy E is expressed as a *functional* of the “normal” and “abnormal” density matrices:

$$
n_q(r, \sigma; r', \sigma') = \langle \Psi | c_q(r' \sigma') \dagger c_q(r \sigma) | \Psi \rangle,
$$

$$
\tilde{n}_q(r, \sigma; r', \sigma') = -\sigma' < \Psi | c_q(r' - \sigma') c_q(r \sigma) | \Psi >
$$

where $c_q(r \sigma) \dagger$ and $c_q(r \sigma)$ are the creation and destruction operators for nucleon of type q ($q = n, p$ for neutrons, protons) at position r with spin σ ($\sigma = \pm 1$ for spin up and down).

In turn the density matrices can be expressed in terms of the quasiparticle wave functions $\varphi_{1k}^{(q)}(r)$ and $\varphi_{2k}^{(q)}(r)$ as

$$
n_q(r, \sigma; r', \sigma') = \sum_{k(q)} \varphi_{2k}^{(q)}(r, \sigma) \varphi_{2k}^{(q)}(r', \sigma')^* \n$$

$$
\tilde{n}_q(r, \sigma; r', \sigma') = - \sum_{k(q)} \varphi_{2k}^{(q)}(r, \sigma) \varphi_{1k}^{(q)}(r', \sigma')^* = - \sum_k \varphi_{1k}^{(q)}(r, \sigma) \varphi_{2k}^{(q)}(r', \sigma')^*.
$$

The ground-state energy is such as to minimize the functional $E = E[n_q(r, \sigma; r', \sigma'), \tilde{n}_q(r, \sigma; r', \sigma')]$ under the constraint of fixed nucleon numbers.
Nuclear energy density functional theory in a nut shell

In the simplest cases, E is written as the integral of a *local* functional

$$E = \int \mathcal{E} \left[n_q(r), \nabla n_q(r), \tau_q(r), J_q(r), \tilde{n}_q(r) \right] \, d^3r$$

where

$$n_q(r) = \sum_{\sigma = \pm 1} n_q(r, \sigma; r, \sigma)$$

$$\tau_q(r) = \sum_{\sigma = \pm 1} \int d^3r' \, \delta(r - r') \nabla \cdot \nabla' n_q(r, \sigma; r', \sigma)$$

$$J_q(r) = -i \sum_{\sigma, \sigma' = \pm 1} \int d^3r' \, \delta(r - r') \nabla n_q(r, \sigma; r', \sigma') \times \sigma_{\sigma'\sigma}$$

$$\tilde{n}_q(r) = \sum_{\sigma = \pm 1} \tilde{n}_q(r, \sigma; r, \sigma)$$

and $\sigma_{\sigma\sigma'}$ denotes the Pauli spin matrices.

*Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in "50 years of Nuclear BCS" (World Scientific Publishing, 2013), pp.40-60*
Nuclear energy density functional theory in a nut shell

Minimizing $E \left[\varphi^{(q)}_{1k}(r), \varphi^{(q)}_{2k}(r) \right]$ under the constraint of fixed nucleon numbers lead to the **Hartree-Fock-Bogoliubov equations** (analogous to Bogoliubov-de Gennes equations for superconductors):

$$\sum_{\sigma'} \begin{pmatrix} h_q(r)_{\sigma\sigma'} & \Delta_q(r)_{\delta_{\sigma\sigma'}} \\ \Delta_q(r)_{\delta_{\sigma\sigma'}} & -h_q(r)_{\sigma\sigma'} \end{pmatrix} \begin{pmatrix} \varphi^{(q)}_{1k}(r, \sigma') \\ \varphi^{(q)}_{2k}(r, \sigma') \end{pmatrix} = E_k \begin{pmatrix} \varphi^{(q)}_{1k}(r, \sigma) \\ \varphi^{(q)}_{2k}(r, \sigma) \end{pmatrix}$$

$$h_q(r)_{\sigma'\sigma} \equiv -\nabla \cdot \frac{\delta E}{\delta \tau_q(r)} \nabla \delta_{\sigma\sigma'} + \frac{\delta E}{\delta n_q(r)} \delta_{\sigma\sigma'} - i \frac{\delta E}{\delta J_q(r)} \cdot \nabla \times \sigma_{\sigma'\sigma} - \mu_q \delta_{\sigma\sigma'},$$

μ_q are the chemical potentials (Lagrange multipliers),

$$\Delta_q(r) \equiv \frac{\delta E}{\delta \tilde{n}_q(r)}$$ is called the pair potential or the **pairing field**.

With suitable boundary conditions, these equations can not only describe the bulk neutron superfluid in neutron-star crusts, but also quantized vortices.
Intermission: functional derivative

Let us consider that the energy $E[n(r)]$ is a functional of the density $n(r)$ and its gradient.
Intermission: functional derivative

Let us consider that the energy $E[n(r)]$ is a functional of the density $n(r)$ and its gradient.

The functional derivative is defined by

$$
\delta E = \int d^3r \frac{\delta E}{\delta n(r)} \delta n(r) \equiv \lim_{\epsilon \to 0} \frac{E[n(r) + \epsilon \delta n(r)] - E[n(r)]}{\epsilon} = \frac{dE}{d\epsilon} \bigg|_{\epsilon=0}
$$

where $\delta n(r)$ is an arbitrary variation of the density that vanishes at the boundary of the integration domain.
Intermission: functional derivative

Let us consider that the energy $E[n(r)]$ is a functional of the density $n(r)$ and its gradient.

The functional derivative is defined by

$$
\delta E = \int d^3r \frac{\delta E}{\delta n(r)} \delta n(r) \equiv \lim_{\epsilon \to 0} \frac{E[n(r) + \epsilon \delta n(r)] - E[n(r)]}{\epsilon} = \frac{dE}{d\epsilon} \bigg|_{\epsilon=0}
$$

where $\delta n(r)$ is an arbitrary variation of the density that vanishes at the boundary of the integration domain.

Example: $E[n(r)] = \int d^3r \mathcal{E}(r)$ with $\mathcal{E}(r) = \mathcal{E}(n(r), \nabla n(r))$

$$
\frac{\delta \mathcal{E}}{\delta n(r)} = \frac{\partial \mathcal{E}(r)}{\partial n(r)} - \nabla \cdot \frac{\partial \mathcal{E}(r)}{\partial \nabla n(r)}
$$
Effective nuclear energy density functional

- In principle, the nuclear functional can be inferred from realistic NN interactions (i.e. fitted to experimental NN phase shifts) using many-body methods

\[
E = \frac{\hbar^2}{2M} (\tau_n + \tau_p) + A(\rho_n, \rho_p) + B(\rho_n, \rho_p)\tau_n + B(\rho_p, \rho_n)\tau_p
\]

\[+ C(\rho_n, \rho_p)(\nabla \rho_n)^2 + C(\rho_p, \rho_n)(\nabla \rho_p)^2 + D(\rho_n, \rho_p)(\nabla \rho_n) \cdot (\nabla \rho_p)\]

+ Coulomb, spin-orbit and pairing

Drut, Furnstahl and Platter, Prog. Part. Nucl. Phys. 64 (2010) 120.
Effective nuclear energy density functional

• **In principle, the nuclear functional can be inferred from realistic NN interactions** (i.e. fitted to experimental NN phase shifts) using many-body methods

\[
\mathcal{E} = \frac{\hbar^2}{2M} (\tau_n + \tau_p) + A(\rho_n, \rho_p) + B(\rho_n, \rho_p)\tau_n + B(\rho_p, \rho_n)\tau_p \\
+ C(\rho_n, \rho_p)(\nabla \rho_n)^2 + C(\rho_p, \rho_n)(\nabla \rho_p)^2 + D(\rho_n, \rho_p)(\nabla \rho_n) \cdot (\nabla \rho_p) \\
+ \text{Coulomb, spin-orbit and pairing}
\]

Drut,Furnstahl and Platter,Prog.Part.Nucl.Phys.64(2010)120.

• **But this is a very difficult task** so in practice, phenomenological functionals are employed.

Bender,Heenen and Reinhard,Rev.Mod.Phys.75, 121 (2003).

Bulgac in “50 years of Nuclear BCS” (World Scientific Publishing, 2013), pp.100-110
Effective nucleon-nucleon interaction

Semi-local functionals can be constructed from **Skyrme effective nucleon-nucleon interactions** of the form

\[
v_{ij} = t_0 (1 + x_0 P_\sigma) \delta(r_{ij}) + \frac{1}{2} t_1 (1 + x_1 P_\sigma) \frac{1}{\hbar^2} \left[p_{ij}^2 \delta(r_{ij}) + \delta(r_{ij}) p_{ij}^2 \right] + t_2 (1 + x_2 P_\sigma) \frac{1}{\hbar^2} \left[\mathbf{p}_{ij} \cdot \delta(r_{ij}) \mathbf{p}_{ij} + \frac{1}{6} t_3 (1 + x_3 P_\sigma) \rho(r)^\alpha \delta(r_{ij}) \mathbf{p}_{ij} \right] + \frac{i}{\hbar^2} W_0 (\sigma_i + \sigma_j) \cdot \mathbf{p}_{ij} \times \delta(r_{ij}) \mathbf{p}_{ij}
\]

using the **"mean-field" approximation**, where \(r_{ij} = r_i - r_j \), \(r = (r_i + r_j)/2 \), \(\mathbf{p}_{ij} = -i\hbar(\nabla_i - \nabla_j)/2 \) is the relative momentum, and \(P_\sigma \) is the two-body spin-exchange operator.

The parameters \(t_i, x_i, \alpha, W_0 \) are fitted to some experimental and/or microscopic nuclear data.

Remark: fitting directly the energy functional \(\mathcal{E} \) (to nuclear-matter calculations for instance) may lead to self-interaction errors.

Chamel, Phys. Rev. C 82, 061307(R) (2010).
Semi-classical methods

- **Local density approximation** \((\xi \ll \ell)\)
 - assuming matter is locally homogeneous: \(\Delta(r) = \Delta(n_n(r), n_p(r))\)
Semi-classical methods

- **Local density approximation** \((\xi \ll \ell)\)
 assuming matter is locally homogeneous: \(\Delta(r) = \Delta(n_n(r), n_p(r))\)

- **Semi-classical approximation** \((\lambda_F \ll \ell)\)
 \(\hbar \to 0\) limit of the BCS gap equation

Semi-classical methods

- **Local density approximation** \((\xi \ll \ell)\)
 assuming matter is locally homogeneous: \(\Delta(r) = \Delta(n_n(r), n_p(r))\)

- **Semi-classical approximation** \((\lambda_F \ll \ell)\)
 \(\hbar \rightarrow 0\) limit of the BCS gap equation

Superfluidity is **highly non-local** due to proximity effects (the coherence length is large compared to spatial density fluctuations). But quantum effects are not fully taken into account.
Band theory

Floquet-Bloch theorem

I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation.

Band theory

Floquet-Bloch theorem

I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation.

The single-particle wave functions can be expressed as

\[\varphi_{\alpha k}(r) = e^{i k \cdot r} u_{\alpha k}(r) \]

where \(u_{\alpha k}(r + \ell) = u_{\alpha k}(r) \) and \(\ell \) are lattice vectors.
Band theory

Floquet-Bloch theorem

I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation.

The single-particle wave functions can be expressed as

\[\varphi_{\alpha k}(\mathbf{r}) = e^{i \mathbf{k} \cdot \mathbf{r}} u_{\alpha k}(\mathbf{r}) \]

where \(u_{\alpha k}(\mathbf{r} + \ell) = u_{\alpha k}(\mathbf{r}) \) and \(\ell \) are lattice vectors.

- \(\alpha \) (band index) accounts for the rotational symmetry around each lattice site,
- \(k \) (wave vector) accounts for the translational symmetry of the crystal.

Band theory

By symmetry, the crystal can be partitioned into identical primitive cells. The HFB equations need to be solved only inside one cell.
Band theory

By symmetry, the crystal can be partitioned into identical primitive cells. The HFB equations need to be solved only inside one cell.

- The shape of the cell depends on the crystal symmetry

Example: body centered cubic lattice
Band theory

By symmetry, the crystal can be partitioned into identical primitive cells. The HFB equations need to be solved only inside one cell.

- The shape of the cell depends on the crystal symmetry

Example: body centered cubic lattice

- The boundary conditions are fixed by the Floquet-Bloch theorem

$$\varphi_{\alpha k}(r + \ell) = e^{i \mathbf{k} \cdot \ell} \varphi_{\alpha k}(r)$$
Band theory

By symmetry, the crystal can be partitioned into identical primitive cells. The HFB equations need to be solved only inside one cell.

- The shape of the cell depends on the crystal symmetry

Example: body centered cubic lattice

The boundary conditions are fixed by the Floquet-Bloch theorem

$$\varphi_{\alpha k}(r + \ell) = e^{i k \cdot \ell} \varphi_{\alpha k}(r)$$

- k can be restricted to the first Brillouin zone (primitive cell of the reciprocal lattice) since for any reciprocal lattice vector \mathbf{K}

$$\varphi_{\alpha k + \mathbf{K}}(r) = \varphi_{\alpha k}(r)$$
Example of neutron band structure

Body-centered cubic crystal of zirconium like clusters with $N = 160$ (70 unbound) and $\bar{\rho} = 7 \times 10^{11}$ g.cm$^{-3}$

Anisotropic multi-band neutron superfluidity

In the deep layers of neutron-star crusts, the spatial fluctuations of \(\Delta(r) \) are small compared to \(\varphi_{\alpha k}(r) \) so that

\[
\int d^3r \varphi^*_{\alpha k}(r) \Delta(r) \varphi_{\beta k}(r) \approx \delta_{\alpha \beta} \int d^3r |\varphi_{\alpha k}(r)|^2 \Delta(r).
\]
Anisotropic multi-band neutron superfluidity

In the deep layers of neutron-star crusts, the spatial fluctuations of $\Delta(r)$ are small compared to $\varphi_{\alpha k}(r)$ so that

$$
\int d^3r \varphi^*_{\alpha k}(r) \Delta(r) \varphi_{\beta k}(r) \approx \delta_{\alpha \beta} \int d^3r |\varphi_{\alpha k}(r)|^2 \Delta(r).
$$

In this decoupling approximation, the Hartree-Fock-Bogoliubov equations reduce to the BCS equations

$$
\Delta_{\alpha k} = -\frac{1}{2} \sum_{\beta} \sum_{k'} \bar{v}_{\alpha k k'}^{\text{pair}} \frac{\Delta_{\beta k'}}{E_{\beta k'}} \tanh \frac{E_{\beta k'}}{2k_B T}
$$

$$
\bar{v}_{\alpha k k'}^{\text{pair}} = \int d^3r v^\pi [\rho_n(r), \rho_p(r)] |\varphi_{\alpha k}(r)|^2 |\varphi_{\beta k'}(r)|^2
$$

$$
E_{\alpha k} = \sqrt{(\varepsilon_{\alpha k} - \mu)^2 + \Delta^2_{\alpha k}}
$$

$\varepsilon_{\alpha k}$, μ and $\varphi_{\alpha k}(r)$ are obtained from band structure calculations. Chamel et al., Phys.Rev.C81,045804 (2010).
Analogy with terrestrial multi-band superconductors

Multi-band superconductors were first studied by Suhl et al. in 1959 but clear evidence were found only in 2001 with the discovery of MgB$_2$ (two-band superconductor)
Analogy with terrestrial multi-band superconductors

Multi-band superconductors were first studied by Suhl et al. in 1959 but clear evidence were found only in 2001 with the discovery of MgB$_2$ (two-band superconductor)

In neutron-star crusts,
- the number of bands can be huge \sim up to a thousand!
- both intra- and inter-band couplings must be taken into account
Neutron pairing gaps

Example at $\bar{n} = 0.06$ fm$^{-3}$ with BSk16

- $\frac{\Delta_{\alpha k}(T)}{\Delta_{\alpha k}(0)}$ is a universal function of T
- The critical temperature is approximately given by the usual BCS relation $T_c \approx 0.567\Delta_F$

Neutron pairing gaps vs density

\bar{n} is the average nucleon density
Z is the number of protons in the Wigner-Seitz cell
A is the number of nucleons in the Wigner-Seitz cell
n_n^f is the density of unbound neutrons
Δ_{u} is the gap in neutron matter at density n_n^f
$\bar{\Delta}_{u}$ is the gap in neutron matter at density n_n

<table>
<thead>
<tr>
<th>\bar{n} [fm$^{-3}$]</th>
<th>Z</th>
<th>A</th>
<th>n_n^f [fm$^{-3}$]</th>
<th>Δ_{F} [MeV]</th>
<th>Δ_{u} [MeV]</th>
<th>$\bar{\Delta}_{u}$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>40</td>
<td>1218</td>
<td>0.060</td>
<td>1.44</td>
<td>1.79</td>
<td>1.43</td>
</tr>
<tr>
<td>0.065</td>
<td>40</td>
<td>1264</td>
<td>0.056</td>
<td>1.65</td>
<td>1.99</td>
<td>1.65</td>
</tr>
<tr>
<td>0.06</td>
<td>40</td>
<td>1260</td>
<td>0.051</td>
<td>1.86</td>
<td>2.20</td>
<td>1.87</td>
</tr>
<tr>
<td>0.055</td>
<td>40</td>
<td>1254</td>
<td>0.047</td>
<td>2.08</td>
<td>2.40</td>
<td>2.10</td>
</tr>
<tr>
<td>0.05</td>
<td>40</td>
<td>1264</td>
<td>0.043</td>
<td>2.29</td>
<td>2.59</td>
<td>2.33</td>
</tr>
</tbody>
</table>

- the nuclear clusters lower the gap by 10 – 20%
- both bound and unbound neutrons contribute to the gap
Pairing field and local density approximation

The effects of inhomogeneities on neutron superfluidity can be directly seen in the pairing field

\[\Delta_n(r) = -\frac{1}{2} \nu^{nn}[n_n(r), n_p(r)]\tilde{n}_n(r), \quad \tilde{n}_n(r) = \sum_{\alpha,k} \mid \varphi_{\alpha k}(r) \mid^2 \frac{\Delta_{\alpha k}}{E_{\alpha k}} \]

Neutron pairing field for \(\tilde{n} = 0.06 \text{ fm}^{-3} \) at \(T = 0 \)

Pairing field at finite temperature

At $T > 0$, the neutron pairing field is given by

$$\Delta_n(r) = -\frac{1}{2} v^{\pi n}[n_n(r), n_p(r)] \tilde{n}_n(r), \quad \tilde{n}_n(r) = \sum_{\alpha, k} |\varphi_{\alpha k}(r)|^2 \frac{\Delta_{\alpha k}}{E_{\alpha k}} \tanh \frac{E_{\alpha k}}{2k_B T}$$

Neutron pairing field for $\bar{n} = 0.06 \text{ fm}^{-3}$

The superfluid becomes more and more homogeneous as T approaches T_c

Impact on thermodynamic quantities: specific heat

Example at \(\tilde{n} = 0.06 \text{ fm}^{-3} \) with BSk16

- Band structure effects are small. This remains true for non-superfluid neutrons.

- The renormalization of \(T_c \) comes from the density dependence of the pairing strength.
Pairing in the shallow layers of neutron-star crusts

In the shallow layers, the decoupling approximation is not very accurate. On the other hand, solving the full HFB equations is computationally very expensive.
Pairing in the shallow layers of neutron-star crusts

In the shallow layers, the decoupling approximation is not very accurate. On the other hand, solving the full HFB equations is computationally very expensive.

Approximation proposed by Wigner\&Seitz in 1933 in the study of metallic sodium (only one valence electron per site):
- Consider only $k = 0$ (i.e. strictly periodic wave functions),
- Replace the W-S cell by a simpler cell of same volume

Problem: nonuniqueness of the boundary conditions.

Margueron & Sandulescu, in "Neutron Star Crust" (Nova Science Publisher, 2012).
Superfluidity in the crust is very different from neutron matter:
- reentrance phenomenon
- existence of several critical temperatures.
These features cannot be explained by the simple BCS theory.
Superfluids are multi-fluid systems

Tisza and Landau showed that superfluid helium cannot be described using the classical hydrodynamic equations. Two distinct dynamical components coexist:

- a superfluid,
- a normal viscous fluid.
Superfluids are multi-fluid systems

Tisza and Landau showed that superfluid helium cannot be described using the classical hydrodynamic equations. Two distinct dynamical components coexist:

- a superfluid,
- a normal viscous fluid.

In neutron stars, electrically charged particles are locked together by the magnetic field on very long timescales. Neutron stars contain (at least!) two dynamical components:

- a plasma of charged particles
- a neutron superfluid.

Relativistic multifluid hydrodynamics is required for modelling superfluid neutron stars.
Mutual entrainment

In superfluid mixtures such as 3He-4He, the different superfluid constituents may still be **mutually entrained**:

$$p_X = \sum_Y K_{XY} v_Y \iff j_X = \sum_Y \rho_{XY} V_Y$$

p_X is the momentum of the component X
v_Y is the velocity of the component Y
j_X is the mass current of the component X
$V_Y = \frac{p_Y}{m_Y}$ is the "superfluid velocity" of the component Y
K_{XY} and ρ_{XY} are symmetric matrices, which depend on the interactions between the constituent particles.

Andreev & Bashkin, Sov. Phys. JETP 42, 164 (1975).
Mutual entrainment

In superfluid mixtures such as 3He-4He, the different superfluid constituents may still be mutually entrained:

$$\rho_X = \sum_Y K^{XY} v_Y \Leftrightarrow j_X = \sum_Y \rho_{XY} V_Y$$

p_X is the momentum of the component X
v_Y is the velocity of the component Y
j_X is the mass current of the component X

$V_Y = \frac{p_Y}{m_Y}$ is the "superfluid velocity" of the component Y

K^{XY} and ρ_{XY} are symmetric matrices, which depend on the interactions between the constituent particles.

Entrainment is nondissipative and is therefore different from drag since superfluids have no viscosity!

Not all matrix elements are independent. Galilean invariance requires

$$m_X = \sum_Y K^{XY} \Leftrightarrow \rho_X = \sum_Y \rho_{XY}$$
Mutual entrainment in $^3\text{He}-^4\text{He}$ mixtures at $T = 0$

Galilean invariance requires

\[
\begin{align*}
m_3 &= \kappa^{33} + \kappa^{34}, \\
m_4 &= \kappa^{44} + \kappa^{43},
\end{align*}
\]

and since $\kappa^{34} = \kappa^{43}$, entrainment is determined by only one matrix element.
Mutual entrainment in $^3\text{He}-^4\text{He}$ mixtures at $T = 0$

Galilean invariance requires

$$m_3 = \mathcal{K}^{33} + \mathcal{K}^{34},$$
$$m_4 = \mathcal{K}^{44} + \mathcal{K}^{43},$$

and since $\mathcal{K}^{34} = \mathcal{K}^{43}$, entrainment is determined by only one matrix element.

Entrainment can be expressed in terms of "effective masses", but different definitions are possible:
Mutual entrainment in $^3\text{He}-^4\text{He}$ mixtures at $T = 0$

Galilean invariance requires

$$m_3 = \kappa^{33} + \kappa^{34} ,$$
$$m_4 = \kappa^{44} + \kappa^{43} ,$$

and since $\kappa^{34} = \kappa^{43}$, entrainment is determined by only one matrix element.

Entrainment can be expressed in terms of "effective masses", but different definitions are possible:

1. $v_3 = 0 \Rightarrow p_4 = m_4^* v_4$ with $m_4^* = \kappa^{44}$ and vice versa
Mutual entrainment in $^3\text{He}-^4\text{He}$ mixtures at $T = 0$

Galilean invariance requires

$$m_3 = \mathcal{K}^{33} + \mathcal{K}^{34},$$

$$m_4 = \mathcal{K}^{44} + \mathcal{K}^{43},$$

and since $\mathcal{K}^{34} = \mathcal{K}^{43}$, entrainment is determined by only one matrix element.

Entrainment can be expressed in terms of "effective masses", but different definitions are possible:

- $\mathbf{v}_3 = 0 \Rightarrow p_4 = m_4^* \mathbf{v}_4$ with $m_4^* = \mathcal{K}^{44}$ and vice versa
- $p_3 = 0 \Rightarrow p_4 = m_4^{\#} \mathbf{v}_4$ with $m_4^{\#} = \mathcal{K}^{44} - \frac{\mathcal{K}^{43} \mathcal{K}^{34}}{\mathcal{K}^{33}} \neq m_4^*$ and vice versa.

Generalized equations of state are needed for modelling superfluid neutron stars.
Mutual entrainment in $^3\text{He}-^4\text{He}$ mixtures at $T = 0$

Galilean invariance requires

$$m_3 = \mathcal{K}^{33} + \mathcal{K}^{34},$$
$$m_4 = \mathcal{K}^{44} + \mathcal{K}^{43},$$

and since $\mathcal{K}^{34} = \mathcal{K}^{43}$, entrainment is determined by only one matrix element.

Entrainment can be expressed in terms of "effective masses", but different definitions are possible:

- $\mathbf{v}_3 = 0 \Rightarrow \mathbf{p}_4 = m_4^* \mathbf{v}_4$ with $m_4^* = \mathcal{K}^{44}$ and vice versa
- $\mathbf{p}_3 = 0 \Rightarrow \mathbf{p}_4 = m_4^{\#} \mathbf{v}_4$ with $m_4^{\#} = \mathcal{K}^{44} - \frac{\mathcal{K}^{43} \mathcal{K}^{34}}{\mathcal{K}^{33}} \neq m_4^*$ and vice versa.

Generalized equations of state are needed for modelling superfluid neutron stars.
How to obtain flow equations for (super)fluid mixtures?

Generalizing Tisza-Landau’s nonrelativistic two-fluid model of superfluid helium to arbitrary relativistic superfluid mixtures is not straightforward.

This formalism relies on an action integral

$$A = \int \Lambda \{ n_{\mu} X \} dM$$

over the 4-dimensional manifold M (Newtonian or Riemannian). The Lagrangian density or master function Λ depends on the 4-current vectors $n_{\mu} X = n X u_{\mu} X$ of the different fluids X. For a short pedagogical introduction, see e.g. Gourgoulhon, EAS Publications Series 21 (2006), 43.
How to obtain flow equations for (super)fluid mixtures?

Generalizing Tisza-Landau’s nonrelativistic two-fluid model of superfluid helium to arbitrary relativistic superfluid mixtures is not straightforward.

An elegant variational formalism was developed by Brandon Carter using exterior calculus.
*Carter in “Relativistic fluid dynamics” (Springer-Verlag, 1989), pp.1-64
How to obtain flow equations for (super)fluid mixtures?

Generalizing Tisza-Landau’s nonrelativistic two-fluid model of superfluid helium to arbitrary relativistic superfluid mixtures is not straightforward.

An elegant variational formalism was developed by Brandon Carter using exterior calculus.

Carter in “Relativistic fluid dynamics” (Springer-Verlag, 1989), pp.1-64

This formalism relies on an action integral \(\mathcal{A} = \int \wedge \{ n^\mu_x \} \, d\mathcal{M}^{(4)} \) over the 4-dimensional manifold \(\mathcal{M}^{(4)} \) (Newtonian or Riemanian).

The Lagrangian density or master function \(\Lambda \) depends on the 4-current vectors \(n^\mu_x = n_x u^\mu_x \) of the different fluids \(\mathcal{X} \).

For a short pedagogical introduction, see e.g.
Variational formulation of superfluid hydrodynamics

Using the action principle and considering variations of the fluid particle trajectories yield

$$n^\mu_X \varpi^\nu_{\mu \nu} + \pi^\nu_{\nu} \nabla_\mu n^\mu_X = f^\nu_X$$

4-momentum covector

vorticity 2-form

4-force density covector

Remark: π^x_{μ} and n^μ_X are mathematically different objects: the first is a \textit{covector}, while the second is a \textit{vector}. This distinction is fundamental in Newtonian spacetime (no metric).
Stress-energy density tensor and generalized pressure

Using Noether identities leads to the stress-energy density tensor of the superfluid mixture

\[T^\mu_\nu = \Psi \delta^\mu_\nu + \sum_{x} n_x^\mu \pi_x^\nu \]

where \(\Psi \) is a generalized pressure

\[\Psi = \Lambda - \sum_{x} n_x^\mu \pi_x^\mu. \]

In general, \(\Psi \) depends on the velocities of the fluids.

The above expressions are valid for any spacetime.
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at $T = 0$. The master function is simply $\Lambda = -\rho c^2$, where ρ is the mass-energy density.
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at $T = 0$. The master function is simply $\Lambda = -\rho c^2$, where ρ is the mass-energy density.

The 4-current is $n^\mu = nu^\mu$, where n is the particle number density and u^μ the 4-velocity, normalized as $u^\mu u_\mu = -c^2$.
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at $T = 0$. The master function is simply $\Lambda = -\rho c^2$, where ρ is the mass-energy density.

The 4-current is $n^\mu = n u^\mu$, where n is the particle number density and u^μ the 4-velocity, normalized as $u^\mu u_\mu = -c^2$.

The variation of the master function can be expressed as

$$\delta \Lambda = -\mu \delta n = \frac{\mu}{c^2} u_\nu \delta n^\nu$$

where μ is the chemical potential.
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at $T = 0$. The master function is simply $\Lambda = -\rho c^2$, where ρ is the mass-energy density.

The 4-current is $n^\mu = n u^\mu$, where n is the particle number density and u^μ the 4-velocity, normalized as $u^\mu u_\mu = -c^2$.

The variation of the master function can be expressed as

$$\delta \Lambda = -\mu \delta n = \frac{\mu}{c^2} u^\nu \delta n^\nu$$

where μ is the chemical potential.

The 4-momentum is thus given by $\pi^\nu = \frac{\partial \Lambda}{\partial n^\nu} = \frac{\mu}{c^2} u^\nu$.
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at \(T = 0 \). The master function is simply \(\Lambda = -\rho c^2 \), where \(\rho \) is the mass-energy density.

The 4-current is \(n^{\mu} = n u^{\mu} \), where \(n \) is the particle number density and \(u^{\mu} \) the 4-velocity, normalized as \(u^{\mu} u_{\mu} = -c^2 \).

The variation of the master function can be expressed as

\[
\delta \Lambda = -\mu \delta n = \frac{\mu}{c^2} u_\nu \delta n^\nu
\]

where \(\mu \) is the chemical potential.

The 4-momentum is thus given by \(\pi_\nu = \frac{\partial \Lambda}{\partial n^\nu} = \frac{\mu}{c^2} u_\nu \).

The generalized pressure reduces to the ordinary pressure

\[
\psi \equiv \Lambda - n^{\mu} \pi_\mu = -\rho c^2 + n\mu = P.
\]
Example: cold relativistic superfluid

Let us consider a single relativistic superfluid at $T = 0$. The master function is simply $\Lambda = -\rho c^2$, where ρ is the mass-energy density.

The 4-current is $n^\mu = nu^\mu$, where n is the particle number density and u^μ the 4-velocity, normalized as $u^\mu u_\mu = -c^2$.

The variation of the master function can be expressed as

$$\delta \Lambda = -\mu \delta n = \frac{\mu}{c^2} u_\nu \delta n^\nu$$

where μ is the chemical potential.

The 4-momentum is thus given by $\pi_\nu = \frac{\partial \Lambda}{\partial n^\nu} = \frac{\mu}{c^2} u_\nu$.

The generalized pressure reduces to the ordinary pressure

$$\Psi \equiv \Lambda - n^\mu \pi_\mu = -\rho c^2 + n\mu = P.$$

Using the relation $P = n\mu - \rho c^2$, the stress-energy density tensor is

$$T^\mu_\nu \equiv \Psi \delta^\mu_\nu + n^\mu \pi_\nu = P\delta^\mu_\nu + \left(\rho + \frac{P}{c^2}\right) u^\mu u_\nu.$$
Superfluidity vs perfect fluidity

In a rotating superfluid, the circulation \(\oint \pi_x^\mu \, dx^\mu = Nh \) is quantized into \(N \) vortices. Let \(d_v \) be the intervortex spacing.
Superfluidity vs perfect fluidity

In a rotating superfluid, the circulation $\oint \pi^x_\mu dx^\mu = Nh$ is quantized into N vortices. Let d_ν be the intervortex spacing.

- On a scale $\ell \ll d_\nu$: the superfluid is irrotational

 $$\varpi^x_{\mu\nu} = 0 \Rightarrow \pi^x_\mu = \hbar \nabla_\mu \phi^x$$

 where ϕ^x is the quantum phase of the (boson) condensate.
Superfluidity vs perfect fluidity

In a rotating superfluid, the circulation $\oint \pi^x_\mu dx^\mu = Nh$ is quantized into N vortices. Let d_ν be the intervortex spacing.

- On a scale $\ell \ll d_\nu$: the superfluid is irrotational
 \[\varpi^x_{\mu\nu} = 0 \Rightarrow \pi^x_\mu = \hbar \nabla_\mu \phi^x \]
 where ϕ^x is the quantum phase of the (boson) condensate.

- On a scale $\ell \gg d_\nu$: the superfluid rotates as a rigid body
 vorticity is carried along u^μ_ν
 \[\bar{u}_\nu \mathcal{L} \varpi^x_{\mu\nu} = 0 \]
 \[\Rightarrow u^\mu_\nu \varpi^x_{\mu\nu} = 0 \]
Relativistic two-fluid models of neutron stars

The simplest model of cold superfluid neutron star cores contains two components:

- a “proton” fluid
- a neutron superfluid.
Relativistic two-fluid models of neutron stars

The simplest model of cold superfluid neutron star cores contains two components:

- a “proton” fluid
- a neutron superfluid.

The corresponding master function can be expressed as

\[\Lambda = -\rho(n_n, n_p)c^2 + \lambda_1(n_n, n_p)(x^2 - n_nn_p) + \lambda_2(n_n, n_p)(x^2 - n_nn_p)^2 + \cdots \]

with

\[x^2c^2 = -g_{\mu\nu}n_\mu^n n_\nu^p, \quad n_n^2c^2 = -g_{\mu\nu}n_\mu^n n_\nu^n, \quad n_p^2c^2 = -g_{\mu\nu}n_\mu^p n_\nu^p. \]
Relativistic two-fluid models of neutron stars

The simplest model of cold superfluid neutron star cores contains two components:

- a “proton” fluid
- a neutron superfluid.

The corresponding master function can be expressed as

\[\Lambda = -\rho(n_n, n_p)c^2 + \lambda_1(n_n, n_p)(x^2 - n_n n_p) + \lambda_2(n_n, n_p)(x^2 - n_n n_p)^2 + \cdots \]

with

\[x^2 c^2 = -g_{\mu\nu} n^{\mu}_n n^{\nu}_p, \]
\[n^2 c^2 = -g_{\mu\nu} n^{\mu}_n n^{\nu}_n, \]
\[n^2 c^2 = -g_{\mu\nu} n^{\mu}_p n^{\nu}_p. \]

The gravitational field is described by the Einstein-Hilbert Lagrangian density

\[\Lambda_{EH} = \frac{c^4}{16\pi G} R, \]

where \(R \) is the Ricci scalar.
Relativistic two-fluid models of neutron stars

The simplest model of cold superfluid neutron star cores contains two components:

- a “proton” fluid
- a neutron superfluid.

The corresponding master function can be expressed as

$$\Lambda = -\rho(n_n, n_p) c^2 + \lambda_1(n_n, n_p) (x^2 - n_n n_p) + \lambda_2(n_n, n_p) (x^2 - n_n n_p)^2 + \cdots$$

with

$$x^2 c^2 = -g_{\mu\nu} n_{\mu}^n n_{\nu}^p,$$
$$n_{\mu}^n c^2 = -g_{\mu\nu} n_{\mu}^n n_{\nu}^n,$$
$$n_{\mu}^p c^2 = -g_{\mu\nu} n_{\mu}^p n_{\nu}^p.$$

The gravitational field is described by the Einstein-Hilbert Lagrangian density

$$\Lambda_{EH} = \frac{c^4}{16\pi G} R,$$

where R is the Ricci scalar.

The microscopic physics is embedded in the usual equation of state $\rho(n_n, n_p)$, and in the entrainment coefficients $\lambda_1(n_n, n_p)$, $\lambda_2(n_n, n_p) \ldots$

Microscopic calculations of $\lambda_1(n_n, n_p)$:

- (non)relativistic Fermi liquid theory,
- (non)relativistic “mean field” theory.
Relativistic models of superfluid neutron stars

The simple two-fluid model can be easily extended to account for the neutron superfluid permeating the inner crust.

Chamel, PhD thesis, Université Paris 6, France (2004)

The presence of a magnetic field and elasticity can be also included:

relativistic formulation

Carter & Samuelsson, Class. Quant. Grav. 23, 5367 (2006).
Relativistic models of superfluid neutron stars

The simple two-fluid model can be easily extended to account for the neutron superfluid permeating the inner crust.

Despite the absence of viscous drag, the crust can still be entrained by the superfluid due to Bragg scattering: $\lambda_1(n_n, n_p), \lambda_2(n_n, n_p) \ldots$ do not vanish in the inner crust.

Chamel, PhD thesis, Université Paris 6, France (2004)
Relativistic models of superfluid neutron stars

The simple two-fluid model can be easily extended to account for the neutron superfluid permeating the inner crust.

Despite the absence of viscous drag, the crust can still be entrained by the superfluid due to Bragg scattering: \(\lambda_1(n_n, n_p), \lambda_2(n_n, n_p) \ldots \) do not vanish in the inner crust.

Chamel, PhD thesis, Université Paris 6, France (2004)

The presence of a magnetic field and elasticity can be also included:

- **non-relativistic formulation**

- **relativistic formulation**

 Carter & Samuelsson, Class. Quant. Grav. 23, 5367 (2006).
Bragg scattering

For decades, neutron diffraction experiments have been routinely performed to explore the structure of materials.

The main difference in neutron-star crusts is that neutrons are highly degenerate.
For decades, neutron diffraction experiments have been routinely performed to explore the structure of materials.

The main difference in neutron-star crusts is that neutrons are highly degenerate

A neutron with wavevector k can be **coherently scattered** if $d \sin \theta = N \pi / k$, where $N = 0, 1, 2, \ldots$ (Bragg’s law).

In this case, it does not propagate in the crystal: it is therefore entrained!
Bragg scattering

For decades, neutron diffraction experiments have been routinely performed to explore the structure of materials.

The main difference in neutron-star crusts is that **neutrons are highly degenerate**

A neutron with wavevector k can be **coherently scattered** if $d \sin \theta = N \pi / k$, where $N = 0, 1, 2, \ldots$ (Bragg’s law).

In this case, it does not propagate in the crystal: it is therefore entrained!

Bragg scattering occurs if $k > \pi / d$. In neutron stars, neutrons have momenta up to k_F. Typically $k_F > \pi / d$ in all regions of the inner crust but the shallowest.
Neutron conduction: free neutrons

ground state

\[\varepsilon_k < \mu \]

conducting state

\[\varepsilon_k < \mu + p_n \cdot \nabla_k \varepsilon_k \]

\[j_n = 0 \]

\[j_n = n_f^f p_n \text{ with } p_n = \hbar \delta k \]

Define an effective mass \(m^*_n = m_n \frac{n_f^f}{n_c^f} \) such that \(p_n \equiv m^*_n v_n \), where \(v_n \) is the average neutron velocity defined by \(j_n = n_f^f m_n v_n \).

All free neutrons contribute to the current: \(m^*_n = m_n \)
Neutron conduction: neutrons in a periodic potential

ground state

\[\varepsilon_{\alpha k} < \mu \]

conducting state

\[\varepsilon_{\alpha k} < \mu + \mathbf{p}_n \cdot \nabla_k \varepsilon_{\alpha k} \]

\[\mathbf{j}_n = 0 \]

\[\mathbf{j}_n = n^c_n \mathbf{p}_n \]

Only some “conduction” neutrons contribute to the current:

\[n^c_n = \frac{m_n}{24\pi^3 \hbar^2} \sum_{\alpha} \int_F |\nabla_k \varepsilon_{\alpha k}| dS^{(\alpha)} \leq n^f_n \Rightarrow m^*_n \geq m_n \]
Neutron conduction: neutrons in a periodic potential

ground state
\[\varepsilon_{\alpha k} < \mu \]

\[j_n = 0 \]

conductor state
\[\varepsilon_{\alpha k} < \mu + p_n \cdot \nabla_k \varepsilon_{\alpha k} \]

\[j_n = n_n^c p_n = 0 \text{ but } p_n \neq 0 \]

If the Fermi level lies in a gap, no current can flow since there is no available states! All neutrons are therefore entrained:
\[n_n^c = 0 \iff m_n^* \to +\infty \]
Neutron band structure: shallow region

Neutron band structure (s.p. energy in MeV vs k) with (left) and without (right) a bcc lattice of tin like clusters:

The band structure is similar to that of free neutrons: entrainment is therefore expected to be weak.
Neutron band structure: intermediate region

Neutron band structure (s.p. energy in MeV vs k) with (left) and without (right) a bcc lattice of zirconium like clusters:

The band structure is very different from that of free neutrons: entrainment is therefore expected to be strong.
How “free” are neutrons in neutron-star crusts?

Results of systematic band structure calculations in all regions of the inner crust of a neutron star using accurately calibrated Skyrme nuclear energy density functional BSk14:

<table>
<thead>
<tr>
<th>\bar{n} (fm$^{-3}$)</th>
<th>n^f_n/n_n (%)</th>
<th>n^c_n/n^f_n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003</td>
<td>20.0</td>
<td>82.6</td>
</tr>
<tr>
<td>0.001</td>
<td>68.6</td>
<td>27.3</td>
</tr>
<tr>
<td>0.005</td>
<td>86.4</td>
<td>17.5</td>
</tr>
<tr>
<td>0.01</td>
<td>88.9</td>
<td>15.5</td>
</tr>
<tr>
<td>0.02</td>
<td>90.3</td>
<td>7.37</td>
</tr>
<tr>
<td>0.03</td>
<td>91.4</td>
<td>7.33</td>
</tr>
<tr>
<td>0.04</td>
<td>88.8</td>
<td>10.6</td>
</tr>
<tr>
<td>0.05</td>
<td>91.4</td>
<td>30.0</td>
</tr>
<tr>
<td>0.06</td>
<td>91.5</td>
<td>45.9</td>
</tr>
</tbody>
</table>

\bar{n} is the average baryon density

n_n is the total neutron density

n^f_n is the “free” neutron density

n^c_n is the “conduction” neutron density

In many layers, most neutrons are entrained by the crust!

Chamel, PRC85, 035801(2012)
Superfluid vortices

A rotating superfluid is threaded by quantized vortex lines, each of which carries an angular momentum \hbar. The surface density of vortices is given by $n_v (\text{km}^{-2}) \sim 10^{14} / P(s)$.

Likewise a type II superconductor is threaded by flux tubes. In a neutron star, the surface density of (proton) flux tubes is expected to be typically $\sim 10^{13} - 10^{14}$ times larger than that of (neutron) vortices. But type I superconductivity is not excluded. Sedrakian & Clark, in "Pairing in Fermionic Systems", (World Scientific, 2006)
Superfluid vortices in neutron star crust

Neutron superfluid vortices can pin to clusters.

![Graphs showing vortices and density profiles](image)

Microscopic calculations of pinning forces:
- local density approximation
- semi-classical methods
- self-consistent “mean-field” methods

The actual pinning of vortices depends also on the structure of the crust, on the rigidity of the lines and on the vortex dynamics.

Bulgac, Forbes, Sharma, PRL110, 241102 (2013)
Superfluid vortices in neutron star core

Neutron superfluid vortices can also pin to flux tubes provided the superconductor is of type II. The strong interaction between neutron superfluid vortices and proton flux tubes in neutron star cores leads to movement of crustal plates.

The evolution of the pulsar spin and magnetic field are intimately related to superfluidity and superconductivity

Pulsar glitches

The strongest evidence for nuclear superfluidity come from pulsar sudden spin-ups. Similar phenomena were observed in He II.

So far 470 glitches have been detected in 165 pulsars.

http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
Pulsar glitches

The strongest evidence for nuclear superfluidity come from pulsar sudden spin-ups. Similar phenomena were observed in He II.

So far 470 glitches have been detected in 165 pulsars.

http://www.jb.man.ac.uk/pulsar/glitches/gTable.html

Vortex pinning by nuclei gives rise to crustal stress until:

- vortices are suddenly unpinned (Anderson&Itoh)
- the crust cracks (Ruderman).

Post-glitch relaxation arises from vortex creep.

Pines & Alpar, Nature 316, 27(1985)
Entrainment and dissipation in neutron-star cores

Historically the **long post-glitch relaxation** provided the first indications of neutron-star superfluidity. But...
Entrainment and dissipation in neutron-star cores

Historically the **long post-glitch relaxation** provided the first indications of neutron-star superfluidity. But...

Due to (non-dissipative) mutual entrainment effects, neutron vortices carry a *fractional magnetic quantum flux*

Sedrakyan & Shakhabasyan, Astrofizika 8 (1972), 557; Astrofizika 16 (1980), 727.

picture from K. Glampedakis
Entrainment and dissipation in neutron-star cores

Historically the long post-glitch relaxation provided the first indications of neutron-star superfluidity. But...

Due to (non-dissipative) mutual entrainment effects, neutron vortices carry a fractional magnetic quantum flux

Sedrakyan & Shakhabasyan, Astrofizika 8 (1972), 557; Astrofizika 16 (1980), 727.

picture from K. Glampedakis

The core superfluid is strongly coupled to the crust due to electrons scattering off the magnetic field of the vortex lines.

Glitches are therefore expected to originate from the crust.
Vela pulsar glitches and crustal entrainment

Vela pulsar glitches are usually interpreted as sudden transfers of angular momentum between the crustal superfluid and the rest of star.

\[J_s = I_{ss} \Omega_s + (I_s - I_{ss}) \Omega_c \]

\((I_s)^2 I_{ss} \geq A_g \Omega |\dot{\Omega}| \)

\[A_g = \frac{1}{t} \sum_i \Delta \Omega_i \Omega \]

Vela pulsar glitches and crustal entrainmant

Vela pulsar glitches are usually interpreted as **sudden transfers of angular momentum between the crustal superfluid and the rest of star.**

However, this superfluid is also entrained! Its angular momentum can thus be written as

\[\mathbf{J}_s = l_{ss}\Omega_s + (l_s - l_{ss})\Omega_c \]

\(\Omega_s \) and \(\Omega_c \) being the angular velocities of the superfluid and the "crust"),
Vela pulsar glitches are usually interpreted as **sudden transfers of angular momentum between the crustal superfluid and the rest of star**.

However this superfluid is also entrained! Its angular momentum can thus be written as

\[J_s = l_{ss} \Omega_s + (l_s - l_{ss}) \Omega_c \]

(\(\Omega_s\) and \(\Omega_c\) being the angular velocities of the superfluid and the “crust”), leading to the following constraint:

\[\frac{(l_s)^2}{l_{ss} l} \geq A_g \frac{\Omega}{|\dot{\Omega}|}, \quad A_g = \frac{1}{t} \sum_i \frac{\Delta \Omega_i}{\Omega} \]

Since 1969, 17 glitches have been regularly detected. The latest one occurred in August 2010.

A linear fit of $\frac{\Delta \Omega}{\Omega}$ vs t yields $A_g \approx 2.25 \times 10^{-14}$ s$^{-1}$

$$\frac{(I_s)^2}{I_{ss}l} \geq 1.6\%$$
Moments of inertia

The ratio \((I_s)^2/I_{ss}I\) depends on the internal structure of the star:

\[
\frac{(I_s)^2}{II_{ss}} = \frac{l_{\text{crust}}}{l_{ss}} \left(\frac{l_s}{l_{\text{crust}}} \right)^2 \frac{l_{\text{crust}}}{l}.
\]

\(I_{ss}/l_{\text{crust}}\) and \(l_s/l_{\text{crust}}\) depend only on the crust physics:

\[
\frac{l_{ss}}{l_{\text{crust}}} \approx \frac{1}{P_{cc}} \int_P^{P_{\text{cc}}} \frac{n_n^f(P)^2}{\bar{n}(P)n_n^c(P)} dP,
\]

\[
\frac{l_s}{l_{\text{crust}}} \approx \frac{1}{P_{\text{core}}} \int_{P_{\text{drip}}}^{P_{cc}} \frac{n_n^f(P)}{\bar{n}(P)} dP.
\]

Using our crust model, we find
\(I_{ss} \approx 4.6 l_{\text{crust}}\) and
\(I_s \approx 0.89 l_{\text{crust}}\) leading to
\[(I_s)^2/I_{ss} \approx 0.17 l_{\text{crust}}\].

The ratio \(l_{\text{crust}}/I\) depends on the global structure of the star \((M, R)\) and the crust-core transition \((n_{cc}, P_{cc})\).

The pulsar glitch constraint thus becomes
\(l_{\text{crust}}/I \geq 9.4\%\).

Moments of inertia

The ratio \(\frac{(I_s)^2}{I_{ss}l} \) depends on the internal structure of the star:

\[
\frac{(I_s)^2}{I_{ss}} = \frac{l_{\text{crust}}}{l_{ss}} \left(\frac{l_s}{l_{\text{crust}}} \right)^2 \frac{l_{\text{crust}}}{l}.
\]

\(I_{ss}/l_{\text{crust}} \) and \(I_s/l_{\text{crust}} \) depend only on the crust physics:

\[
\frac{l_{ss}}{l_{\text{crust}}} \approx \frac{1}{P_{cc}} \int_{P_{\text{drip}}}^{P_{cc}} \frac{n_f(P)^2}{\bar{n}(P)n_n(P)} \, dP,
\]

\[
\frac{l_s}{l_{\text{crust}}} \approx \frac{1}{P_{\text{core}}} \int_{P_{\text{drip}}}^{P_{cc}} \frac{n_f(P)}{\bar{n}(P)} \, dP.
\]

Using our crust model, we find \(l_{ss} \approx 4.6l_{\text{crust}} \) and \(l_s \approx 0.89l_{\text{crust}} \) leading to \((I_s)^2/I_{ss} \approx 0.17l_{\text{crust}} \).

The ratio \(l_{\text{crust}}/l \) depends on the global structure of the star \((M, R)\) and the crust-core transition \((n_{cc}, P_{cc})\).

The pulsar glitch constraint thus becomes \(\frac{l_{\text{crust}}}{l} \geq 9.4\% \).

Pulsar glitch constraint

Shaded areas are excluded if Vela pulsar glitches originate in the crust (Lattimer&Prakash interpolation formula was used):

The inferred mass of Vela is unrealistically low $M < M_\odot$.

The crust does not carry enough angular momentum.

Andersson et al. PRL 109, 241103; *Chamel*, PRL 110, 011101.

Core-induced glitches (pinning to flux tubes)?

Puzzling glitches

The glitch theory has been challenged by other observations:

- a huge glitch in PSR 2334+61
 Alpar, AIP Conf.Proc.1379,166(2011)

- unusual post-glitch relaxation in PSR J1119–6127
 Weltevrede et al., MNRAS 411,1917(2011)

- a huge glitch in PSR J1718–3718

- an anti-glitch in 1E 2259+586
 Archibald et al.,Nature 497,591 (2013).
Puzzling glitches

The glitch theory has been challenged by other observations:

- a huge glitch in PSR 2334+61
 Alpar, AIP Conf.Proc. 1379, 166 (2011)
- unusual post-glitch relaxation in PSR J1119−6127
 Weltevrede et al., MNRAS 411, 1917 (2011)
- a huge glitch in PSR J1718−3718
- an anti-glitch in 1E 2259+586
 Archibald et al., Nature 497, 591 (2013).

Several physical aspects are not well-understood:

- type of superconductivity
- vortex pinning
- superfluid turbulence
- entrainment
- crust-core coupling.

Haskell & Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015).
Cooling of isolated neutron stars

During the first tens of seconds, the newly formed proto-neutron star with a radius of ~ 50 km stays very hot with $T \sim 10^{11} - 10^{12}$ K. Within $\sim 10 - 20$ s the proto-neutron star becomes transparent to neutrinos and thus rapidly cools down by powerful neutrino emission shrinking into an ordinary neutron star.

After about $10^4 - 10^5$ years, the cooling is governed by the emission of thermal photons due to the diffusion of heat from the interior to the surface.

Puppis A (RX J0822-4300) from Chandra
Thermal X-ray emission of neutron stars

- The thermal X-ray emission of young neutron stars is usually hindered by the magnetospheric component.
- For old pulsars, the thermal radiation dominate but is too low to be detectable (except for hot polar caps).

Picture from Zavlin
Thermal X-ray emission of neutron stars

The best targets are isolated mature neutron stars with no magnetospheric activity: Compact Central Objects (CCOs), Dim Isolated Neutron Stars (DINS).

1) RX J0822−4300
2) 1E 1207.4−5209 (PKS 1209−53)
3) PSR B1706−44
4) PSR B0833−45 (Vela)
5) PSR J0538+2817 (S147)
6) PSR B0656+14
7) PSR J0633+1746
8) PSR J0633+1746 "Geminga"
9) RX J1856.5−3754
10) RX J0720.4−3125

http://www.astroscu.unam.mx/neutrones/home.html
Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.
Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.

Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.

proton superfluidity

Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.

proton and neutron superfluidity in the core

Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.

Cooling of neutron stars

Theoretical cooling simulations yield the surface temperature vs age. The curve depends on neutron star mass, radius, composition, presence of magnetic field and superfluidity.

The thermal X-ray emission provides evidence for superfluidity in neutron stars but it is hard to conclude about the internal composition.
Cooling of Cassiopeia A

The recent monitoring of the fast cooling of the young neutron star in Cassiopeia A provides strong evidence for neutron-star core superfluidity.

Page et al., PRL 106, 081101; Shternin et al., MNRAS 412, L108.

Superfluidity reduces the heat capacity and neutrino emissivities but also opens new channels of neutrino emission.
However, a more recent analysis of observational data from all detectors suggests that the cooling rate might be slower.

However, a more recent analysis of observational data from all detectors suggests that the cooling rate might be slower.

Moreover, alternative scenarios have been proposed.

Blaschke, Grigorian, Voskresensky, PRC88, 065805 (2013)
Sedrakian, A&A 555, L10 (2013)
However, a more recent analysis of observational data from all detectors suggests that the cooling rate might be slower.

Moreover, alternative scenarios have been proposed.
Blaschke, Grigorian, Voskresensky, PRC88, 065805 (2013)
Sedrakian, A& A 555, L10 (2013)

Still, most scenarios require superfluidity and/or superconductivity in neutron stars.
Neutron star formation and cooling

Due to its relatively low neutrino emissivity, the crust of a newly-born neutron star cools less rapidly than the core and thus stays hotter.

The thermal relaxation time depends on the crust physics:

\[t_W \approx (\Delta R)^2 \left[1 - \frac{2GM}{R} \right]^{-3/2} \frac{C_{\text{tot}}}{\kappa} \]

\(C_{\text{tot}} \) is the total heat capacity
\(\kappa \) is the thermal conductivity

Neutron star formation and cooling

Due to its relatively low neutrino emissivity, the crust of a newly-born neutron star cools less rapidly than the core and thus stays hotter.

The thermal relaxation time depends on the crust physics:

$$t_W \simeq (\Delta R)^2 \left[1 - \frac{2GM}{R} \right]^{-3/2} \frac{C_{\text{tot}}}{\kappa}$$

C_{tot} is the total heat capacity
κ is the thermal conductivity

Neutron pairing suppresses the neutron heat capacity thus reducing t_W

Fortin et al., PRC 82, 065804 (2010)

But so far no such young neutron stars have been observed; they are probably hidden by the expanding supernova envelopes.
X-ray binaries

Neutron stars in X-ray binaries may be **heated as a result of the accretion of matter** from the companion star (see Pawel Haensel’s lecture).

The accretion of matter onto the surface of the neutron star triggers thermonuclear fusion reactions which can become explosive, giving rise to **X-ray bursts**.

In quasipersistent soft X-ray transients (SXT), accretion outbursts are followed by **long period of quiescence** during which the accretion rate is much lower. In some cases, the period of accretion can last long enough for the crust to be **heated out of equilibrium with the core**.
Thermal relaxation of soft x-ray transients

The thermal relaxation during the quiescent state has been recently monitored for a few accreting neutron stars.

Example: KS 1731–260

Curves 1,3,4 : crystalline crust with neutron superfluidity
Curves 2 : crystalline crust without neutron superfluidity
Curves 5 : amorphous crust with neutron superfluidity

Thermal relaxation of soft x-ray transients

The thermal relaxation during the quiescent state has been recently monitored for a few accreting neutron stars.

Example: KS 1731−260

Curves 1,3,4 : crystalline crust with neutron superfluidity
Curve 2 : crystalline crust without neutron superfluidity
Curve 5 : amorphous crust with neutron superfluidity

Observations of SXT provide evidence of superfluidity in the inner crust of a neutron star. But there are also puzzles (see Pawel Haensel’s lecture).
Neutron star precession

Long-term cyclical variations of order months to years have been reported in a few neutron stars: Her X-1 (accreting neutron star), the Crab pulsar, PSR 1828–11, PSR B1642–03, PSR B0959–54 and RX J0720.4–3125.

Example: Time of arrival residuals, period residuals, and shape parameter for PSR 1828–11

Stairs et al., Nature 406(2000),484.

These variations have been interpreted as the signature of **neutron star precession**.
Precession and superfluidity

For a non-superfluid star with deformation $\epsilon = \Delta I/I$,

$$P_{\text{prec}} = \frac{P}{\epsilon} \gg P$$

For a superfluid star with pinned vortices

$$P_{\text{prec}} = \frac{l_{\text{pin}}}{l} P \ll P$$

Precession and superfluidity

For a non-superfluid star with deformation $\epsilon = \Delta I/I$,
$$P_{\text{prec}} = \frac{P}{\epsilon} \gg P$$

For a superfluid star with pinned vortices
$$P_{\text{prec}} = \frac{I_{\text{pin}}}{I} P \ll P$$

Observations of precession could thus shed light on superfluidity. On the other hand, precession may trigger instabilities that could unpin vortices.

Glampedakis, Andersson, Jones, PRL 100, 081101 (2008).
Asteroseismology of neutron stars

The presence of superfluids and superconductors in neutron stars leads to the existence of new oscillations modes.

In the simplest two-fluid model, there exists two families of modes:
- "normal" modes (comoving fluids)
- "superfluid" modes (countermoving fluids)

Asteroseismology of neutron stars

The presence of superfluids and superconductors in neutron stars leads to the existence of new oscillations modes.

In the simplest two-fluid model, there exists two families of modes:
- "normal" modes (comoving fluids)
- "superfluid" modes (countermoving fluids)

Quasiperiodic oscillations (QPOs) have been detected in the X-ray flux of giant flares from a few soft gamma-ray repeaters.

Example: SGR 1806–20

These QPOs are thought to be the signatures of superfluid magneto-elastic oscillations.
Summary

Nuclear superfluidity in neutron stars was predicted long before the discovery of pulsars, but many aspects still remain not very well understood (e.g. pairing phases, T_c, hydrodynamics).

What we know with confidence:

Fortunately, superfluidity leaves its imprint on various astrophysical phenomena (e.g. glitches, cooling, oscillations etc).
List of some references about superfluidity and superconductivity in compact stars:

Books/Lecture notes:
- Carter, Lecture Notes in Physics 578, 54 (Springer, 2001)
- Lombardo& Schulze, Lecture Notes in Physics 578, 30 (Springer, 2001)

Reviews:
- Anglani et al., Rev. Mod. Phys. 86, 509 (2014)
- Chamel & Haensel, Living Rev. Relativity 11, 10 (2008)
- Andersson & Comer, Living Rev. Relativity 10 (2007), 1