On reaction mechanisms involved in the deuteron-induced surrogate reactions on actinides

M. Avrigeanu, V. Avrigeanu, and C. Manailescu
“Horia Hulubei” National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania

Nuclear Data Request

- ITER, IFMIF, SPIRAL2

Deuteron cross section measurements & theoretical frame completion required for:

Al [1], Cu [2], Nb [3], Fe [4,5], Ni, Cr, Co, Mn, C …. (E_d ~ 60 MeV)

Reliable gas production cross-section data (H, He)
Dosimetry data file for E > 20 MeV (IRDF)

Surrogate Reactions

an indirect approach for determining cross sections for the interaction processes difficult or impossible to measure

Complementary analysis for (d,f) on actinides [6]

Surrogate reactions method

$^{237}\text{Np}(n,\gamma)^{238}\text{Np}$ → Desired Reaction

A + a → C → B + b

$\sigma_{a,b}(E_a, E) = \sigma_a(E_a, E^*) P_b(E^*)$

D + d → C + C → B + b + c

$\sigma_{d,b}(E_d, E^*) = \sigma_d(E_d, E^*) P_b(E^*)$

Compound-nuclear reaction cross sections from surrogate measurements

Jutta E. Fischer, Jason T. Burke, Frank S. Dietrich, Nicholas D. Saliba, Ian J. Thompson, and Wald Yones

Table 4 (Nuclear Physics A13 (1979) 283)

<table>
<thead>
<tr>
<th>Excitation energies of levels in ^{238}Np, differential cross sections</th>
<th>135°</th>
<th>14°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>26.5</td>
<td>5.0</td>
<td>12</td>
</tr>
<tr>
<td>62.0</td>
<td>7.0</td>
<td>12</td>
</tr>
<tr>
<td>88.0</td>
<td>7.0</td>
<td>12</td>
</tr>
<tr>
<td>107.0</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>132.0</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>152.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>278.1</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>319.2</td>
<td>4.0</td>
<td>18</td>
</tr>
<tr>
<td>859.0</td>
<td>9.0</td>
<td>12</td>
</tr>
<tr>
<td>409.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>531.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>465.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>643.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>630.0</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>638.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>625.0</td>
<td>0.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Nuclear Levels in ^{213}Np

Y. A. Ionescu and Jean Kern

Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland

R. F. Casten and W. R. Kanes

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

and

I. Ahmad, J. Erskine, A. M. Friedman and K. Katori

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Nuclear Reactions $^{238}\text{Np}(n, \gamma) E = 17-650, 2500-5500$ keV; measured E_1, I_1; deduced Q. $^{213}\text{Np}(d, p) E = 4.7$ MeV; measured E_2, I_2. ^{213}Np deduced levels, K, J, z, Nilson configurations.
E_d = 15 MeV (C.M. ~ 14 MeV)

BU: deuteron breakup
- Deuteron binding energy: B_d = 2.225 MeV
- \(\varepsilon_{p_{\text{max}}} = E_d - B_d \sim 11.8 \text{ MeV} \)
- BU threshold \(\sim 11.8 \text{ MeV} \)

ST: deuteron stripping (d,p)
- \(Q_{\text{Al(d,p)}} = 5.5 \text{ MeV} \)
- \(\varepsilon_{p_{\text{max}}} \sim E_d + Q_{\text{Al(d,p)}} = 19.5 \text{ MeV} \)

Fig. 3. Decomposition of the experimental angle-averaged proton spectrum (thick full curve) into MSC and MSD type contributions. The thin full curve is derived from the spectrum at 128° by means of eq. (11) and represents the MSC contribution. It is compared with theoretical CN + PE calculations (see text) with \(n_0 = 3 \) (PE part: \(\cdots \cdots \), sum CN + PE: \(- - - \)) and \(n_0 = 4 \) (PE part: \(\cdots \cdots \cdots \), sum CN + PE: \(\cdots \cdots \cdots \)). The arrow indicates the BU threshold separating the BU and Stripping energy regions.
BREAKUP

\[d \text{ breakup involvement: } d + ^{93}\text{Nb} \rightarrow ^{95}\text{Mo}^* \]

- Elastic: \(^{93}\text{Nb} + d \rightarrow ^{93}\text{Nb} + n + p\)
- Inelastic: \((^{93}\text{Nb} + n) + p \rightarrow ^{94}\text{Nb} + p\)
- Inelastic: \((^{93}\text{Nb} + p) + n \rightarrow ^{94}\text{Mo} + n\)

Inelastic breakup enhancement:
- \(^{94}\text{Nb} + y + p \rightarrow \text{(}\gamma p \text{ ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{93}\text{Nb} + n + p \rightarrow \text{(np ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{93}\text{Zr} + p + p \rightarrow \text{(2p ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{90}\text{Y} + \alpha + p \rightarrow \text{(ap ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{94}\text{Mo} + y + n \rightarrow \text{(yn ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{93}\text{Mo} + n + n \rightarrow \text{(2n ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{93}\text{Nb} + p + n \rightarrow \text{(pn ch. of } ^{95}\text{Mo}^*\text{)}\)
- \(^{90}\text{Zr} + \alpha + n \rightarrow \text{(an ch. of } ^{95}\text{Mo}^*\text{)}\)
TENDL (PE+CN) 2012, 2013 predictions for d+^{93}Nb

\[^{93}\text{Nb}(d,p)^{94}\text{Nb}^{m} \]
\[\text{[3+, 6.263min]} \]

\[^{93}\text{Nb}(d,x)^{92}\text{Nb}^{m} \]
\[\text{[2+, 10.15d]} \]

\[^{93}\text{Nb}(d,p\alpha)^{90}\text{Y}^{m} \]
\[\text{[7+, 3.19 h]} \]

\[^{93}\text{Nb}(d,2n)^{91}\text{Nb}^{m} \]
\[\text{[1/2-, 60.86 d]} \]

\[^{93}\text{Nb}(d,p\alpha)^{90}\text{Y}^{m} \]
\[\text{[7+, 3.19 h]} \]
Breakup Cross Sections Parametrizations

Kalbach (2003)

\[\sigma_{BU}^{p/n} = K_{d,(p,n)} \left(\frac{A^{1/3} + 0.8}{1 + \exp\left(\frac{13 - E_d}{5}\right)} \right)^2, \quad K_{d,p} = 21, \quad K_{d,n} = 18 \]

Avrigeanu+ (2009)

\[\sigma_{BU}^{p/n} = (0.087 - 0.0066Z + 0.00163ZA^{1/3} + 0.0017A^{1/3}E_d - 0.000002ZE_d^2) \sigma_R \]
\[\sigma_{EB}^{p/n} = (0.031 - 0.0028Z + 0.00051ZA^{1/3} + 0.0005A^{1/3}E_d - 0.000001ZE_d^2) \sigma_R \]

Kalbach (2010)

\[\sigma_{BU}^{p/n} = 5.4(D_0)^2 \exp\left(\frac{E_d}{170}\right)[1 + \exp\left(\frac{42 - E_d}{14}\right)]^{-1}, \quad D_0 = 1.2 \frac{5A^{1/3}}{1 + \exp\left(\frac{E_d}{50}\right)} + 1.2 \]

www.tunl.duke.edu/publications/tunlprogress/2003/

Importance of Deuteron Breakup mechanism

Marilena Avrigeanu

Carpathian Summer School of Physics, July 13 - 26, 2014 @ Sinaia, Romania

Marilena Avrigeanu
\[\text{d} + ^{231}\text{Pa}: \ \text{d breakup involvement} \]

\[^{231}\text{Pa}(d,3n)^{230}\text{U} \]

\[E_{th}^{d,3n} = 9.347 \text{ MeV} \]

\[\sigma \ (\text{mb}) \]

\[10^0 \ 10^1 \ 10^2 \]

\[E_d \ (\text{MeV}) \]

\[10 \ 12 \ 14 \ 16 \ 18 \ 20 \]

\[\text{d breakup: } \text{d} + ^{231}\text{Pa} \]

\[E_{p,n}(E_d) = 0.5 \frac{A+1}{A+2} E_d + 0.5 \frac{A+1}{A} (-B_d \pm \frac{Z}{9.5}) \]

\[Morgenstern et al. (2009) \]

\[^{231}\text{Pa}(p,2n)^{230}\text{U} \]

\[E_{th}^{p2n} = 7.073 \text{ MeV} \]

\[\sigma \ (\text{mb}) \]

\[10^0 \ 10^1 \ 10^2 \]

\[E_p \ (\text{MeV}) \]

\[10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \]

\[\text{Morgenstern et al. (2008)} \]

\[^{231}\text{Pa+d} \rightarrow ^{231}\text{Pa} + n + \gamma \]

\[232\text{U}^* \rightarrow 2n \rightarrow 230\text{U} \]
Breakup deuteron effects on $^{231}\text{Pa}(d,3n)^{230}\text{U}$ reaction

Investigation of deuteron breakup and deuteron-induced fission on actinide nuclei at low incident energies

M. Avrigeanu and V. Avrigeanu

Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania

A. J. Koning

Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten, The Netherlands

(Received 9 December 2011; revised manuscript received 15 February 2012; published 12 March 2012)

The dominance of the deuteron breakup mechanism around the Coulomb barrier is shown by an analysis of the $^{231}\text{Pa}(d,3n)^{230}\text{U}$ reaction excitation function, while the same attribute was found within a former assessment.

\[\sigma_{\text{BF}}^p(E_d) = \sigma_{\text{BF}}^p(E_d) \int dE_p \frac{\sigma_{(p,x)}(E_p) \left(\frac{1}{2\pi} \right)^{1/2} \exp \left[- \frac{(E_p - E_p^0(E_d))^2}{2w^2} \right]}{\sigma_R^p} \]
CONCLUSIONS

\[^{54}\text{Fe}(d,n)^{55}\text{Co} \]

\[^{58}\text{Fe}(d,p)^{59}\text{Fe} \]

\[^{27}\text{Co}(d,x)^{58}\text{Co} \]

\[^{93}\text{Nb}(d,p)^{94}\text{Nb}^m \]

\[^{59}\text{Co}(d,x)^{58}\text{Co} \]

\[^{93}\text{Nb}(d,x)^{92}\text{Nb}^m \]
Reduction factor due to DIRECT INTERACTIONS

The deuteron total reaction cross section that remains to be available for the PE+CN mechanisms has to be corrected for the incident flux leakage through DI processes, i.e. the breakup, stripping and pick-up, by a reduction factor:

\[
frac{1}{\sigma_R} = 1 - \frac{\sigma_{BU} + \sigma_{(d,n)} + \sigma_{(d,p)} + \sigma_{(d,t)} + \sigma_{(d,\alpha)}}{\sigma_R}
\]

\[= 1 - \frac{\sigma_{DI}}{\sigma_R}\]

\[(8)\]

\[E_d (\text{MeV})\]

\[\text{d+}^{54}_{26}\text{Fe} \quad \text{d+}^{56}_{26}\text{Fe} \quad \text{d+}^{57}_{26}\text{Fe} \quad \text{d+}^{58}_{26}\text{Fe}\]
ELASTIC BREAKUP

CHECKING the correctness of parameterization EXTRAPOLATION

PHYSICAL REVIEW C 82, 037601 (2010)

Improved deuteron elastic breakup energy dependence via the continuum-discretized coupled-channels method

M. Avrigeanu

“Horia Hulubei” National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, R-077125 Bucharest-Magurele, Romania

A. M. Moro

Departamento de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

(Received 9 June 2010; published 9 September 2010)

Experimental elastic-scattering angular distributions for deuteron interaction with 63Cu and 93Nb targets are compared with calculations performed within the continuum-discretized coupled-channels (CDCC) method, in which coupling to breakup channels is explicitly taken into account. The calculated elastic breakup cross sections are compared with the predictions of an empirical parametrization for a wide range of deuteron incident energies. The good agreement between the calculations and the systematics at the energies where data are available indicates that the CDCC method permits a useful assessment of empirical parametrizations and provides useful guidance for the extrapolation of these parametrizations beyond the energies formerly considered.
Elastic breakup: phenomenology versus CDCC

Three-body Hamiltonian
Two-body projectile - Target

\[H = K_r + K_R + V_{np}(r) + U_n(R - r/2) + U_p(R + r/2), \]

Elastic breakup treated as an INELASTIC EXCITATION of the projectile (Nuclear & Coulomb interactions) through the Coupled Channels approach

Essence of CDCC
- truncated continuum spectrum at \(E^{\text{max}} \)
- divided into a finite number of bins: \(i = 0 \) (g.s.), \(N \)

Each bin represented by a single, averaged w.f.:

\[\{ |\phi_i\rangle \}_{i=1}^N \xrightarrow{\text{ind}} \frac{1}{\sqrt{D_i}} \int_{\epsilon_{i-1}}^{\epsilon_i} |\phi(E)\rangle \, dE, \quad i = 1, \ldots, N, \]

\((V_{np} = V_0 e^{-(r/r_d)^2}; \quad V_0 = 72.15 \text{ MeV}; \quad r_d = 1.484 \text{ fm}) \)

M. Kamimura et al., Prog. Theor. Phys. Suppl. 80 (1986) 1

\[\Psi(\xi, R) = \sum_{i=0}^N |\phi_i(\xi), \chi_i(R)\rangle, \]

where

\(\chi_i(R) \) channel wave functions:
- \(i=0 \): elastic channel
- \(i>0 \): breakup channel
Elastic breakup: phenomenology versus CDCC

Total Wave Function

\[|\Psi(\xi, R)\rangle = \sum_{i=0}^{N} |\phi_i(\xi), \chi_i(R)\rangle \]

Coupled Channels calculations:

\[i=0: \text{elastic channel} \]
\[\sum \sigma_i = \sigma_{\text{CDCC}}, \ i>0 \]

Marilena Avrigeanu

Nuclei Produced in Reactor

RED Long-lived Minor Actinide
BLUE Fissile Nuclei

→ Decay within a few days

238Pu → 239Pu → 240Pu → 241Pu → 242Pu → 243Pu

236Np → 237Np → 238Np → 239Np

234U → 235U → 236U → 237U → 238U → 239U