A NEW OPTIMAL BOUND ON LOGARITHMIC SLOPE OF ELASTIC HADRON-HADRON SCATTERING

D. B. ION1,2, M. L. D. ION3

1 TH Division, CERN, CH-1211 Geneva 23, Switzerland
2 NIPNE-HH, Bucharest P.O. Box MG-6, Romania
3 University of Bucharest, Department of Atomic and Nuclear Physics, Romania

Received November 29, 2006

In this paper we prove a new optimal bound on the logarithmic slope of the elastic slope \(b \) when: \(\sigma_{el} \) and \(\frac{d\sigma}{d\Omega}(1) \) and \(\frac{d\sigma}{d\Omega}(-1) \), are known from experimental data. The results on the experimental tests of this new optimal bound are presented in Sect. 3 for the principal meson-nucleon elastic scatterings: \((\pi\pm P \rightarrow \pi\pm P \) and \(K \pm P \rightarrow K \pm P)\) at all available energies. Then we show that the saturation of this optimal bound is observed with high accuracy practically at all available energies in meson-nucleon scattering.

PACS: 13.85.Dz

1. INTRODUCTION

Recently, in Ref. [1], by using reproducing kernel Hilbert space (RKHS) methods [2–4], we described the quantum scattering of the spinless particles by a principle of minimum distance in the space of the scattering quantum states (PMD-SQS). Some preliminary experimental tests of the PMD-SQS, even in the crude form [1], when the complications due to the particle spins are neglected, showed that the actual experimental data for the differential cross sections of all \(PP, \bar{P}P, K \pm P, \pi \pm P \), scatterings at all energies higher than 2 GeV, can be well systematized by PMD-SQS predictions. Moreover, connections between the optimal states [1], the PMD-SQS in the space of quantum states and the maximum entropy principle for the statistics of the scattering channels was also recently established by introducing quantum scattering entropies [5–8].

The aim of this paper is to prove a new optimal bound on the logarithmic slope of the elastic hadron-hadron scattering by solving the following optimization problem: to find an lower bound on the logarithmic slope \(b \) when: \(\sigma_{el}, \frac{d\sigma}{d\Omega}(+1) \) and \(\frac{d\sigma}{d\Omega}(-1) \), including spin effects, are given. The results on the experimental tests of this new optimal bound are presented for the principal meson-nucleon elastic scatterings: \((\pi \pm P \rightarrow \pi \pm P \) and \(K \pm P \rightarrow K \pm P)\) at all available energies.
available energies. Then it was shown that the saturation of this optimal bound is observed with high accuracy practically at all available energies in meson-nucleon scattering.

2. OPTIMAL HELICITY AMPLITUDES FOR SPIN \((0\rightarrow 1/2^+ \rightarrow 0\rightarrow 1/2^+)\) SCATTERINGS

First we present some basic definitions and results for the optimal states in the meson-nucleon scattering when the integrated elastic cross section \(\sigma_{el}\) and differential cross sections \(\frac{d\sigma}{d\Omega}(\pm 1)\) are known from experiments. Therefore, let \(f_{++}(x)\) and \(f_{+-}(x)\), \(x \in [-1, 1]\), be the scattering helicity amplitudes of the meson-nucleon scattering process:

\[
M(0^-) + N(1/2^+) \rightarrow M(0^-) + N(1/2^+) \tag{1}
\]

\(x = \cos \theta\), \(\theta\) being the c.m. scattering angle. The formalizations of the helicity amplitudes \(f_{+}(x)\) and \(f_{-}(x)\) are chosen such that the differential cross section \(\frac{d\sigma}{d\Omega}(x)\) is given by

\[
\frac{d\sigma}{d\Omega}(x) = |f_{++}(x)|^2 + |f_{+-}(x)|^2 \tag{2}
\]

Then, the elastic integrated cross section \(\sigma_{el}\) is given by

\[
\frac{\sigma_{el}}{2\pi} = \int_{-1}^{+1} d\frac{\sigma}{d\Omega}(x) dx = \int_{-1}^{+1} \left[|f_{++}(x)|^2 + |f_{+-}(x)|^2 \right] dx \tag{3}
\]

Since we will work at fixed energy, the dependence of \(\sigma_{el}\) and \(\frac{d\sigma}{d\Omega}(x)\) and of \(f(x)\), on this variable was suppressed. Hence, the helicities of incoming and outgoing nucleons are denoted by \(\mu\), \(\mu'\), and was written as \((+), (-)\), corresponding to \((\frac{1}{2})\) and \((-\frac{1}{2})\), respectively. In terms of the partial waves amplitudes \(f_{J^+}\) and \(f_{J^-}\) we have

\[
\left\{
\begin{aligned}
f_{++}(x) &= \sum_{J=\frac{1}{2}}^{J_{\text{max}}} \left(J + \frac{1}{2} \right) (f_{J^-} + f_{J^+}) d_{11}^J(x) \\
f_{+-}(x) &= \sum_{J=\frac{1}{2}}^{J_{\text{max}}} \left(J + \frac{1}{2} \right) (f_{J^-} - f_{J^+}) d_{11}^J(x)
\end{aligned}
\right. \tag{4}
\]

where the \(d_{\mu\nu}^J(x)\)-rotation functions are given by

\[
\left\{
\begin{aligned}
d_{11}^J(x) &= \frac{1}{l+1} \left[\frac{1+x}{2} \right]^\frac{l}{2} \left[P_{l+1}(x) - P_l(x) \right] \\
d_{11}^J(x) &= \frac{1}{l+1} \left[\frac{1-x}{2} \right]^\frac{l}{2} \left[P_{l+1}(x) + P_l(x) \right]
\end{aligned}
\right. \tag{5}
\]
and prime indicates differentiation of Legendre polynomials $P_j(x)$ with respect to $x = \cos \theta$.

$$\frac{\sigma_{el}}{2\pi} = \sum (2J + 1) \left[|f_{j+}|^2 + |f_{j-}|^2 \right]$$ \hspace{1cm} (6)

Now, let us consider the optimization problem

$$\left\{ \min \left[\sum (2J + 1) \left(|f_{j+}|^2 + |f_{j-}|^2 \right) \right] \right. \text{subject to:}$$

$$\frac{d\sigma}{d\Omega} (+1) = \text{fixed, } \text{and} \frac{d\sigma}{d\Omega} (-1) = \text{fixed}$$

which will be solved by using Lagrange multiplier method [9] where

$$\begin{align*}
\mathcal{L} &= \left[\sum (2J + 1) \left(|f_{j+}|^2 + |f_{j-}|^2 \right) \right] + \\
&+ \alpha \left[\frac{d\sigma}{d\Omega} (+1) - \sum (J + 1/2) (f_{j+} + f_{j-})^2 \right] \\
&+ \beta \left[\frac{d\sigma}{d\Omega} (-1) - \sum (J + 1/2) (f_{j+} - f_{j-})^2 \right]
\end{align*}$$ \hspace{1cm} (8)

So, we prove that the solution of the problem (7)–(8) is as follows

$$\begin{cases}
f_{++}^o(x) = f_{++}(+1) - \frac{K_{\frac{1}{2}\frac{1}{2}}(x,+1)}{K_{\frac{1}{2}\frac{1}{2}}(+1,+1)} \\
f_{+-}^o(x) = f_{+-}(-1) - \frac{K_{\frac{1}{2}\frac{1}{2}}(x,-1)}{K_{\frac{1}{2}\frac{1}{2}}(-1,-1)}
\end{cases}$$ \hspace{1cm} (9)

where the reproducing kernel functions are defined as

$$\begin{align*}
K_{\frac{1}{2}\frac{1}{2}}(x,y) &= \sum_{J} J \left(J + \frac{1}{2} \right) d_{\frac{1}{2}}^J (x) d_{\frac{1}{2}}^J (y) \\
2K_{\frac{1}{2}\frac{1}{2}}(+1,+1) &= (J_o + 1)^2 - 1/4 \\
2K_{\frac{1}{2}\frac{1}{2}}(-1,-1) &= (J_o + 1)^2 - 1/4 \\
(J_o + 1)^2 - \frac{1}{4} &= \frac{4\pi}{\sigma_{el}} \left[\frac{d\sigma}{d\Omega} (1) + \frac{d\sigma}{d\Omega} (-1) \right]
\end{align*}$$ \hspace{1cm} (10)
Proof: Let us consider the complex partial amplitudes \(f_{J^z} = r_{J^z} + ia_{J^z} \), where \(r_{J^z} \) and \(a_{J^z} \) are real and imaginary parts, respectively. Then, Eq. (8) can be expressed completely in terms of the variational variables \(r_{J^z} \) and \(a_{J^z} \). Therefore, by calculating the first derivative we obtain

\[
\begin{align*}
\frac{1}{(2J+1)} \frac{\partial \mathcal{L}}{\partial r_{J^z}} &= r_{J^z} - \alpha R^{++}(+1) \pm \beta R^{--}(-1) = 0 \\
\frac{1}{(2J+1)} \frac{\partial \mathcal{L}}{\partial a_{J^z}} &= a_{J^z} - \alpha A^{++}(+1) \pm \beta A^{--}(-1) = 0
\end{align*}
\] (11)

where we have defined \(f^{++}(x) \equiv R^{++}(x) + iA^{++}(x) \), and \(f^{--}(x) \equiv R^{--}(x) + iA^{--}(x) \), respectively, where

\[
\begin{align*}
R^{++}(+1) &= \sum \left(J + \frac{1}{2}\right)(r_{J^z} + r_{J^-}) \\
A^{++}(+1) &= \sum \left(J + \frac{1}{2}\right)(a_{J^z} + a_{J^-}) \\
R^{--}(-1) &= \sum \left(J + \frac{1}{2}\right)(r_{J^-} - r_{J^z}) \\
A^{--}(-1) &= \sum \left(J + \frac{1}{2}\right)(a_{J^-} - a_{J^z})
\end{align*}
\] (12)

Therefore, from Eqs (11) we get

\[
\begin{align*}
\left\{ \begin{array}{l}
r_{J^z} = \alpha R^{++}(+1) - \beta R^{--}(-1) \\
r_{J^-} = \alpha R^{++}(+1) + \beta R^{--}(-1) \\
a_{J^z} = \alpha A^{++}(+1) - \beta A^{--}(-1) \\
a_{J^-} = \alpha A^{++}(+1) + \beta A^{--}(-1)
\end{array} \right.
\] (13)

Then using the definitions (2) and (3), we get

\[
\alpha^{-1} = \beta^{-1} = (J_o + 1)^2 - 1/4 = \frac{4\pi}{\sigma_{el}} \left[\frac{d\sigma}{d\Omega}(+1) + \frac{d\sigma}{d\Omega}(-1) \right]
\] (14)

and, consequently we obtain that the optimal solution of the problem (7) can be written in the form

\[
\begin{align*}
f_{++}^o(x) &= \frac{2f_{++}(+1)}{(J_o + 1)^2 - 1/4} \sum_{J_{1/2}} \left(J + \frac{1}{2}\right) d_{11}^{J^z}(x) d_{11}^{J^z}(+1) \\
f_{--}^o(x) &= \frac{2f_{++}(-1)}{(J_o + 1)^2 - 1/4} \sum_{J_{1/2}} \left(J + \frac{1}{2}\right) d_{11}^{J^z}(x) d_{11}^{J^z}(-1)
\end{align*}
\] (15)
Now from Eqs. (14) and (15) we obtain the optimal solution (9) in which the reproducing functions \(K_{\frac{1}{2}}(x, y) \) and \(K_{\frac{3}{2}}(x, y) \) are defined by (10).

3. OPTIMAL BOUND ON LOGARITHMIC SLOPE

We recall the definition of the elastic slope \(b \), and the relation

\[
\sigma_{\text{el}} \left(\frac{d}{d\Omega} (1) \right) \sigma_{\Omega} \lambda = \left[\ln \left(\frac{d\sigma}{d\Omega} (x) \right) \right]_{x=1} \quad (16)
\]

where transfer momentum is defined by: \(t = -2q^2(1-x) \), \(\overline{\lambda} = 1/q \), and \(q \) is the c.m momentum.

Now, let us assume that \(\sigma_{\text{el}}, (1) \frac{d}{d\Omega} (1) \sigma_{\Omega} \) and \((1) \frac{d}{d\Omega} (1) \sigma_{\Omega} \) are known from the experimental data. Then, taking into account the solution (9)–(10) of the optimization problem (7), it is easy to prove that the elastic slope \(b \) defined by (16) must obey the optimal inequality:

\[
b \geq b_o = \overline{\lambda}^2 \left\{ \frac{4\pi}{\sigma_{\text{el}}} \left[\frac{d\sigma}{d\Omega} (1) + \frac{d\sigma}{d\Omega} (1) \right] - 1 \right\} \quad (17)
\]

Proof: Indeed a proof of the optimal inequality (17) can be obtained as singular solution of the following optimization problem

\[
\min \{b\}, \text{ subject to: } \sigma_{\text{el}} = \text{fixed}, \quad \frac{d\sigma}{d\Omega} (1) = \text{fixed}, \quad \frac{d\sigma}{d\Omega} (1) = \text{fixed} \quad (18)
\]

So, the lower limit of the elastic slope \(b \) is just the elastic of the differential cross section given by the result (9)–(10). Consequently, we obtain that the optimal slope \(b_o \) is given by

\[
b_o = \overline{\lambda}^2 \left[\frac{K_{\frac{1}{2}}(x, +1)}{K_{\frac{3}{2}}(x, +1)} \right]_{x=1} = \overline{\lambda}^2 \left[\left(J_o (J_o + 2) - \frac{1}{4} \right) \right] \quad (19)
\]

Then, using the second part of (14) we obtain the inequality (17).

An important model independent result obtained Ref. [1], via the description of quantum scattering by the principle of minimum distance in space of states (PMD-SS), is the following optimal lower bound on logarithmic slope of the forward diffraction peak in hadron-hadron elastic scattering:
\[
 b \geq b_o \geq \frac{\pi^2}{4} \left[\frac{4\pi}{\sigma_{el}} \frac{d\sigma}{d\Omega}(1)-1 \right]
\]

(20)

In is important to remark, the optimal bound (17) improves in a more general and exact form not only the unitarity bounds derived by MacDowell and Martin [10] for the logarithmic slope \(b_A \) of absorptive contribution \(\frac{d\sigma_A}{d\Omega}(s,t) \) to the elastic differential cross sections but also the unitarity lower bound derived in Ref. [1] (see also Ref. [11, 15]) for the slope \(b \) of the entire \(\frac{d\sigma}{d\Omega}(s,t) \) differential cross section. Therefore, it would be important to make an experimental detailed investigation of the saturation of this bond in the hadron-hadron scattering, especially in the low energy region.

4. EXPERIMENTAL TESTS OF THE BOUND (17)

A comparison of the experimental elastic slopes \(b \) with the optimal slope \(b_o \), (17) is presented in Figs. 1 for \((\pi^\pm P, K^\pm P)\)-scatterings: The values of the \(\chi^2 = \sum_j (b_j - b_{oj})^2 / (\epsilon_{b,j}^2 + \epsilon_{b_{oj},j}^2) \), (where \(\epsilon_{b,j} \) and \(\epsilon_{b_{oj},j} \) are the experimental errors corresponding to \(b \) and \(b_{oj} \), respectively) are used for the estimation of departure from the optimal PMD-SS-slope \(b_{oj} \), and then, we obtain the statistical parameters presented in Table 1. For \(\pi^\pm P \)-scattering the experimental data on \(b, \frac{d\sigma}{d\Omega}(1), \), \(\frac{d\sigma}{d\Omega}(-1), \) and \(\sigma_{el} \), for the laboratory momenta in the interval \(0.2 \text{GeV} \leq P_{LAB} \leq 10 \text{GeV} \) are calculated directly from the phase shifts analysis (PSA) of Hohler et al. [12]. To these data we added some values of \(b \) from the linear fit of Lasinski et al. [14] and also from the original fit of authors quoted in some references in [15]. Unfortunately, the values of \(b_{oj} \) corresponding to the Lasinski’s data [14] was impossible to be calculated since the values of \(\frac{d\sigma}{d\Omega}(1) \) from their original fit are not given. For \(K^\pm P \)-scatterings the experimental data on \(b, \frac{d\sigma}{d\Omega}(1), \frac{d\sigma}{d\Omega}(-1) \) and \(\sigma_{el} \), in the case of \(K^\mp P \), are calculated from the experimental (PSA) solutions of Arndt et al. [13]. To these data we added those collected from the original fit of data from references of [15] which the approximation \(\frac{d\sigma}{d\Omega}(-1)=0 \). For \(K^+ P \)-scattering, we added some values of \(b \) from the linear fit of Lasinski et al. [14] and also those pairs \((b, b_{oj}) \) calculated directly from the experimental (PSA) solutions of Arndt et al. [13]. All these results can be compared with those presented in [15].
5. SUMMARY AND CONCLUSION

The main results and conclusions obtained in this paper can be summarized as follows:

(i) In this paper we proved the optimal bound (17) as the singular solution ($\lambda_0 = 0$) of the optimization problem to find a lower bound on the logarithmic slope b with the constraints imposed when σ_{el} and $\frac{d\sigma}{d\Omega}(+1)$ and $\frac{d\sigma}{d\Omega}(-1)$ are fixed from experimental data. This result is similar with that obtained recently in Refs. [1, 15] for the problem to find an upper bound for the scattering entropies when σ_{el} and $\frac{d\sigma}{d\Omega}(+1)$ are fixed.

(ii) We find that the optimal bound (17) is verified experimentally with high accuracy at all available energies for all the principal meson-nucleon scatterings.

(iii) From mathematical point of view, the PMD-SQS-optimal states (9)–(10), are functions of minimum constrained norm and consequently can be completely described by reproducing kernel functions (see also Ref. [1, 3–4]). So, with this respect the PMD-SQS-optimal states from the reproducing kernel Hilbert space (RKHS) of the scattering amplitudes are analogous to the coherent states from the RKHS of the wave functions.

(iv) The PMD-SQS-optimal state (9)–(10) have not only the property that is the most forward-peaked quantum state but also possesses many other peculiar properties such as maximum Tsallis-like entropies, as well as the scaling and the s-channel helicity conservation properties, etc., that make it a good candidate for the description of the quantum scattering via an optimum principle. In fact the validity of the principle of least distance in space of states in hadron-hadron scattering is already well illustrated in Fig. 1 and Table 1.

All these important properties of the optimal helicity amplitudes (9)–(10) will be discussed in more detail in a forthcoming paper.

REFERENCES

Fig. 1 – The experimental values (black circles) of the logarithmic slope b for the principal meson-nucleon scatterings are compared with the optimal PMD-SQS-predictions b_o (white circles). The experimental data for b, $\frac{d\sigma}{d\Omega} (+1)$ and σ_{el} are taken from Refs. [12–14], (see the text).
A new optimal bound on logarithmic slope of elastic hadron-hadron scattering

Table 1

\(\chi^2 \) – statistical parameters of the principal hadron-hadron scattering. In these estimations for \(P_{\text{LAB}} \leq 2 \text{ GeV/c} \) the errors \(\epsilon_i^{\text{PSA}}(\pi^0 P) = 0.1 b^{\text{PSA}} \) and \(\epsilon_i^{\text{PSA}}(K^0 P) = 0.1 b^{\text{PSA}} \) are taken into account while for the errors to the optional slopes \(b_o \) calculated from phase shifts analysis and [15]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Statistical parameters} & \text{For} P_{\text{LAB}} \geq 2 \text{ GeV/c} & \text{For all} P_{\text{LAB}} \geq 0.2 \text{ GeV/c} \\
\hline
\pi^+ P \rightarrow \pi^+ P & N_p & \chi^2/n_{\text{ dof}} & N_p & \chi^2/n_{\text{ dof}} \\
\pi^- P \rightarrow \pi^- P & 28 & 1.02 & 90 & 3.37 \\
K^+ P \rightarrow K^+ P & 31 & 0.92 & 93 & 8.00 \\
K^- P \rightarrow K^- P & 37 & 1.15 & 73 & 1.91 \\
PP \rightarrow PP & 37 & 1.52 & 73 & 7.84 \\
\bar{PP} \rightarrow \bar{PP} & 29 & 5.01 & 32 & 5.06 \\
\hline
\end{array}
\]