The vibrational dynamics of three Ca-based metallic glasses viz. Ca$_{70}$Mg$_{30}$, Ca$_{70}$Zn$_{30}$ and Ca$_{60}$Al$_{40}$ have been studied at room temperature in terms of the phonon eigen frequencies of longitudinal and transverse modes, employing three theoretical formulations given by Hubbard-Beeby (HB), Takeno-Goda (TG) and Bhatia-Singh (BS). Five local field correction functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time in the present investigation to study the screening influence on the aforesaid properties. Long wavelength limits of the phonon modes are then used to get information on the elastic and thermal properties of the system. The low temperature specific heat is also calculated from the elastic limit of the phonon dispersion curves. The present results agree satisfactory with the experimental as well as theoretical values.

Key words: effective pair potential, phonon dispersion curves, pseudopotential, elastic and thermodynamic properties, metallic glasses.

INTRODUCTION

During the several decades, considerable theoretical development taken place in the field of disordered condensed matter physics. Generally, in this field the disorder means it is a periodic random structure. The few examples of this system are crystals with impurities, liquid metals, binary alloys, metallic glasses etc. The disordered materials are also known as non-crystalline materials. Moreover, the metallic glasses play an important role in the field of materials science and engineering, which opens the door of research for both theoretical and experimental persons. Such solids have electronic properties normally associated with metals but atomic arrangement is not periodic. They made up of two components of metals provide us physically interesting system for theoretical investigations. Based on the knowledge of interatomic interactions we can understand the thermodynamic, mechanical and electronic transport properties of amorphous solids. Such investigations involve measurements of collective density waves at larger momenta and for a few metallic glasses it is
possible to measure the dynamical structure factors up to very large wave vectors [1–13]. Recently, Vora et al. [1–3] have been studied the vibrational properties of some binary metallic glasses.

Keeping all this in mind, the theoretical investigations on the vibrational dynamics of three Ca-based amorphous binary metallic glasses viz. Ca$_{70}$Mg$_{30}$, Ca$_{70}$Zn$_{30}$ and Ca$_{60}$Al$_{40}$ have been reported in the present paper. There are three main theoretical approaches used to compute the phonon frequencies of alloys: one is the phenomenological theory of Hubbard-Beeby (HB) [14] in the random phase approximation, second approach is the quasi crystalline approximation technique with interatomic pair potential developed by Takeno-Goda (TG) [15] and third is by evaluation of force constants as was done by Bhatia-Singh (BS) [16, 17].

In the present investigation, the well recognized empty core model (EMC) potential of Ashcroft [18] used to explain the electron-ion interaction in the study of metallic glasses is given by [18],

$$W(q) = \frac{4\pi Z e^2}{\Omega_o q^2 e(q)} \cos(q r_c).$$

(1)

Where r_c is the parameter of the potential, Z the valence and $e(q)$ the modified Hartree dielectric function. The model potential parameter r_c is calculated from the well known formula [1–3] as follows:

$$r_c = \left[\frac{0.51 r_S}{(Z)^{1/3}} \right].$$

(2)

Here r_S is the effective Wigner-Seitz radius of the component, respectively.

Five local field correction functions viz. Hartree (H) [19], Taylor (T) [20], Ichimaru-Utsumi (IU) [21], Farid et al. (F) [22] and Sarkar et al. (S) [23] are used for the first time in the present investigation to study the screening influence on the aforesaid properties. Besides, the thermodynamic properties such as longitudinal sound velocity (ν_L), transverse sound velocity (ν_T) and Debye temperature (θ_D), low temperature specific heat capacity (C_V) and some elastic properties viz. the isothermal bulk modulus (B_T), modulus of rigidity (G), Poisson’s ratio (σ) and Young’s modulus (Y) are also calculated from the elastic part of the phonon dispersion curves (PDC). Finally a comparison is made between the computed results and available theoretical as well as experimental data.

Ca$_{70}$Mg$_{30}$ is the most important candidate of simple metallic glasses. The phonon dispersion curves (PDC) of this glass has been investigated by many workers theoretically using the pseudopotential theory [1, 2, 6–11] as well as experimentally [5]. The Ca$_{70}$Mg$_{30}$ glass has been theoretically investigated by
Hafner [14] and Hafner-Jaswal [15] on the basis of $S(q, \omega)$ and by BS approach using a model approach and assuming the force among nearest neighbours as central and volume dependent. Saxena et al. [8, 9] have studied the PDC of this glass using the HB and TG approaches with effective pair potential (EPP) and effective atom model (EAM) models. In these entire calculations Ashcroft’s empty core model potential [18] is used. Also Agarwal et al. [10, 11] have calculated the PDC of the glass using BS approach. Thakore et al. [4] have also been studied the PDC and their related properties of the glass using HB approach with EAM model. Recently, Vora et al.[1, 2] have been studied the vibrational properties of Ca$_{70}$Mg$_{30}$ binary metallic glass. In all these calculations, they have noted that, their results are in a very good agreement with the reported experimental or theoretical findings. Similarly from the literature survey, It can be noted that, nobody have reported the experimental as well as theoretical work related to PDC of Ca$_{70}$Zn$_{30}$ and Ca$_{60}$Al$_{40}$ glasses in our knowledge. The structural and electronic properties of Ca$_{70}$Zn$_{30}$ glass have been studied by Tegze and Hafner [12]. They have adopted ab initio pseudopotential as well as MD techniques to study the electronic structure of the glass. The atomic and electronic structure of Ca$_{60}$Al$_{40}$ glass is studied by Hafner and Jaswal [13]. These calculations are based on realistic models for the atomic structure constructed by MD simulation.

METHOD OF COMPUTATION

The fundamental ingredient, which goes into the calculation of the phonon dynamics of simple metallic glasses, is the effective pair potential, which consists of two contributions. One is the direct interaction between ions given by \(\left(\frac{Z e^2}{r} \right) \) while the other contribution is due to the indirect interaction between ions through the electron cloud. The indirect interaction is calculated using the normalized energy wave number characteristics.

The effective interatomic pair potential for the amorphous binary alloys can be found the binary system as a one component metallic fluid, *i.e.* the concept of effective atom [1–4]. In this concept a simple binary disordered system A_XB_{1-X} can be looked upon as an assembly of the effective atom (*i.e.* one component system). In the present study we have considered here all the glasses as a one component fluid for investigating the phonon frequencies and their related elastic and thermodynamic properties.

The effective interaction in the glass can be written as [1–4],

$$V_{\text{eff}}(r) = \left(\frac{Z_{\text{eff}}^2 e^2}{r} \right) + \frac{\Omega_{\text{eff}}}{\pi^2} \int F_{\text{eff}}(q) \left[\frac{\sin(qr)}{qr} \right] q^2 dq.$$ (3)
Here Z_{eff} and Ω_{eff} are the effective valence and atomic volume of the one component fluid respectively, given by [1–4]

$$Z_{\text{eff}} = XZ_A + (1 - X)Z_B,$$

(4)

and

$$\Omega_{\text{eff}} = X\Omega_{\text{A}} + (1 - X)\Omega_{\text{B}}.$$

(5)

Where X is the concentration of first component of the glass.

The energy wave number characteristics appearing in the equation (3) is written as [1–4]

$$F_{\text{eff}} (q) = \frac{-\Omega_{\text{eff}} q^2}{16\pi} \left| W_{\text{eff}} (q) \right|^2 \left\{ \frac{\varepsilon_{\text{eff}}^{(2)} (q) - 1}{1 + \left[\varepsilon_{\text{eff}}^{(2)} (q) - 1 \right] \left[1 - f_{\text{eff}} (q) \right]} \right\}. \tag{6}$$

Here $W_{\text{eff}} (q)$ is the effective bare ion potential, $\varepsilon_{\text{eff}}^{(2)} (q)$ the Hartree dielectric response function and $f_{\text{eff}} (q)$ the local field correction function to introduce the exchange and correlation effects. A quantity which is equally important as the pair potential while studying a disorder system is the pair correlation function $g(r)$, which is computed theoretically from the effective pair potentials [1–4].

The recent investigations to study the vibrational dynamics of amorphous system have shown that any first-principle theory to study the propagation of phonons in amorphous solids is much more accurate and close to the experimental investigations than those based on parametric calculations. In a view of this, the three theories of phonons in amorphous solids as developed by Hubbard-Beeby (HB) [14], Takeno-Goda (TG) [15] and Bhatia-Singh (BS) [16, 17] have been employed for studying the longitudinal and transverse phonon frequencies in the present study.

According to the HB, the expressions for longitudinal ($\omega_L (q)$) and transverse ($\omega_T (q)$) phonon frequencies are [1–4, 14],

$$\omega_L^2 (q) = \omega_K^2 \left[1 - \frac{\sin(q\sigma)}{q\sigma} - \frac{6\cos(q\sigma)}{(q\sigma)^2} + \frac{6\sin(q\sigma)}{(q\sigma)^3} \right], \tag{7}$$

$$\omega_T^2 (q) = \omega_K^2 \left[1 - \frac{3\cos(q\sigma)}{(q\sigma)^2} + \frac{3\sin(q\sigma)}{(q\sigma)^3} \right]. \tag{8}$$

with $\omega_K^2 = \left(\frac{4\pi\rho_{\text{eff}}}{3M_{\text{eff}}} \right) \int_0^\infty g(r) V_{\text{eff}}^* (r) r^2 dr$ is the maximum frequency.
The expressions for longitudinal ($\omega_L(q)$) phonon frequency and transverse ($\omega_T(q)$) phonon frequency as per TG approach are [1–3, 15],

\[
\omega_L^2(q) = \left(\frac{4\pi \rho_{eff}}{M_{eff}}\right) \int_0^\infty dr g(r) \left[r V_{eff}(r) \left(1 - \frac{\sin(qr)}{qr}\right)\right] + \left\{r^2 V_{eff}''(r) - \right.

\left.\frac{1}{3} \left(\frac{\sin(qr)}{qr} - \frac{2 \cos(qr)}{(qr)^2} + \frac{2 \sin(qr)}{(qr)^3}\right)\right\},
\]

\[
\omega_T^2(q) = \left(\frac{4\pi \rho_{eff}}{M_{eff}}\right) \int_0^\infty dr g(r) \left[r V_{eff}(r) \left(1 - \frac{\sin(qr)}{qr}\right)\right] + \left\{r^2 V_{eff}''(r) - \right.

\left.\frac{2}{3} \left(\frac{2 \cos(qr)}{(qr)^2} + \frac{2 \sin(qr)}{(qr)^3}\right)\right\},
\]

(9)

(10)

Recently BS approach was modified by Shukla and Campnaha [17]. They introduced screening effects in the BS approach. Then, with the above assumptions and modification, the dispersion equations for an amorphous material can be written as [1–3, 16, 17]

\[
\rho_{eff} \omega_L^2(q) = \frac{2 N_{eff}}{q^2} \left(\beta I_0 + \delta I_2\right) + \frac{k_s k_T^2 q^2 \varepsilon(q)}{q^2 + k_T^2} G(qr_s)^2,
\]

\[
\rho_{eff} \omega_T^2(q) = \frac{2 N_{eff}}{q^2} \left(\beta I_0 + \frac{1}{2} \delta (I_0 - I_2)\right).
\]

(11)

(12)

The other details of used constants in the BS approach were already narrated in the literature [16, 17]. Here M_{eff} is the effective atomic mass, ρ_{eff} the effective number density and N_{eff} the effective coordination number of the glassy system, respectively.

In the long-wavelength limit of the frequency spectrum, the both the frequencies i.e. transverse and longitudinal are proportional to the wave vectors and obey the relationships [1–4],

\[
\omega_L \propto q \quad \text{and} \quad \omega_T \propto q,
\]

\[
\therefore \omega_L = \nu_L q \quad \text{and} \quad \omega_T = \nu_T q.
\]

(13)

Where ν_L and ν_T are the longitudinal and transverse sound velocities, in the glass respectively. For the three approaches the equations are:
For HB approach the formulations for \(v_L \) and \(v_T \) are given by [14],

\[
v_L (HB) = \omega_E \sqrt{\frac{3\sigma^2}{10}},
\]

and

\[
v_T (HB) = \omega_E \sqrt{\frac{\sigma^2}{10}}.
\]

In TG approach the expressions for \(v_L \) and \(v_T \) are written by [15],

\[
v_L (TG) = \left[\frac{4\pi \rho_{\text{eff}}}{30 M_{\text{eff}}} \right] \int_0^\infty dr \ g(r) \ r^3 \left\{ r V''(r) - 4V'(r) \right\}^{1/2},
\]

and

\[
v_T (TG) = \left[\frac{4\pi \rho_{\text{eff}}}{30 M_{\text{eff}}} \right] \int_0^\infty dr \ g(r) \ r^3 \left\{ 3r V''(r) - 4V'(r) \right\}^{1/2}.
\]

The formulations for \(v_L \) and \(v_T \) in BS approach are as follows [16, 17],

\[
v_L (BS) = \left[\frac{N_{\text{eff}}}{\rho_a} \left(\frac{1}{3} \beta + \frac{1}{5} \delta \right) + k_s \right]^{1/2},
\]

and

\[
v_T (BS) = \left[\frac{N_{\text{eff}}}{\rho_a} \left(\frac{1}{3} \beta + \frac{1}{15} \delta \right) \right]^{1/2}.
\]

In the long-wavelength limit of the frequency spectrum, transverse and longitudinal sound velocities \(v_L \) and \(v_T \) are computed. The isothermal bulk modulus \(B_T \), modulus of rigidity \(G \), Poisson’s ratio \(\sigma \), Young’s modulus \(Y \) and the Debye temperature \(\theta_D \) are found using the expressions [1–4],

\[
B_T = \rho_M \left(v_L^2 - \frac{4}{3} v_T^2 \right),
\]

\[
G = \rho_M \, v_T^2.
\]

With \(\rho_M \) is the isotropic number density of the solid.

\[
\sigma = 1 - 2 \left(\frac{v_T^2}{v_L^2} \right) / \left(2 - 2 \left(\frac{v_T^2}{v_L^2} \right) \right),
\]

\[
Y = 2G \left(\sigma + 1 \right).
\]
Vibrational dynamics of Ca-based metallic glasses

\[\theta_D = \frac{\hbar \omega_D}{k_B} = \frac{\hbar}{k_B} 2\pi \left[\frac{9\rho \sigma}{4\pi} \right]^{1/3} \left[\frac{1}{v_L^3} + \frac{2}{v_T^3} \right]^{1/3}. \]

(24)

here \(\omega_D \) is the Debye frequency.

The low temperature specific heat \(C_V \) can be calculated from the following expressions [1–3],

\[C_V = \frac{\Omega_{D_{\text{eff}}}}{k_B T^2} \sum_{\lambda=L,T} \int \frac{d^3q}{(2\pi)^3} \left[\exp \left(\frac{\hbar \omega_q(q)}{k_B T} \right) - 1 \right] \frac{\omega_q^2(q)}{1 - \exp \left(-\frac{\hbar \omega_q(q)}{k_B T} \right)}. \]

(25)

RESULTS AND DISCUSSION

The input parameters and other related constants used in the present computations are shown in Table 1. The effective interatomic pair potentials, the phonon dispersion curves (PDC) and graphical representations of the low temperature specific heat capacity \((C_V) \) are displayed in Figs. 1–12 for each metallic glass.

<table>
<thead>
<tr>
<th>Glass</th>
<th>(Z_{\text{eff}})</th>
<th>(N_C)</th>
<th>(M_{\text{eff}}) (amu)</th>
<th>(\Omega_0) (au)</th>
<th>(\rho_M) (gm/cm³)</th>
<th>(r_C) (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca70Mg30</td>
<td>2.00</td>
<td>12.00</td>
<td>35.35</td>
<td>246.07</td>
<td>1.6091</td>
<td>1.2592</td>
</tr>
<tr>
<td>Ca70Zn30</td>
<td>2.00</td>
<td>12.00</td>
<td>47.67</td>
<td>221.86</td>
<td>2.4070</td>
<td>1.2317</td>
</tr>
<tr>
<td>Ca60Al40</td>
<td>2.40</td>
<td>12.00</td>
<td>34.84</td>
<td>218.52</td>
<td>1.7861</td>
<td>1.1073</td>
</tr>
</tbody>
</table>

The effective interatomic pair potential of the Ca70Mg30 glass is shown in Fig. 1. It is seen from the figure that, the effective interatomic pair potentials have significant oscillations in the larger \(r \)-region and also it shows fair agreement with the others [6, 8, 9]. The first zero for \(V(r=r_0) \) due to H-function occurs at \(r_0 = 8.4 \) au, while inclusion of exchange and correlation suppresses this zero and occurs at \(r_0 \leq 4.5 \) au. The well width and the position of \(V_{\text{min}}(r) \) are also affected by the nature of the screening. The maximum depth in the pair potential is obtained for S-function and moved towards the left as compared to the potentials of Hafner [14] and Saxena et al. [16]. The results of Saxena et al. [16] show significant oscillations and potential energy remains positive in the large \(r \)-region. Thus Coulomb repulsive potential part dominates the oscillations due to ion-electron-ion interactions in their studies.
The presently computed pair potentials of Ca$_{70}$Mg$_{30}$ glass are shown in Fig. 1. The first zero for $V(r = r_0)$ due to H occurs at $r_0 = 8.4$ au, while inclusion of exchange and correlation suppresses this zero and occurs that at $r_0 \leq 4.6$ au. The inclusion of exchange and correlation effects increases the well width of $V(r)$ compared to H-screening function and also affects the position of $V_{\text{min}}(r)$. The maximum depth in the pair potential is obtained for S-function, while minimum is for H-screening function. The pair potential curves of Ca$_{70}$Zn$_{30}$ show hardcore nature.

The presently computed pair potentials of Ca$_{70}$Zn$_{30}$ glass are shown in Fig. 2 along with the other such results [13]. In the present study the maximum depth in the pair potential is obtained for S-function. The first zero for $V(r = r_0)$ due to H-function occurs at $r_0 = 7.7$ au, while the inclusion of exchange and correlation function suppresses this to $r_0 \leq 4.6$ au. The position of $V_{\text{min}}(r)$ is also affected by the nature of the screening. It is observed that the position of first
minimum of pair potentials in present computations moved towards the left in contrast to Hafner and Jaswal [22]. They have obtained very deep minimum in their study while present model potential generates shallow minimum in $V(r)$.

Also one important feature can be noted from the Figs. 1–3 that, when we moved from Ca$_{70}$Mg$_{30}$ to Ca$_{60}$Al$_{40}$ glass the as effective valence Z_{eff} increases the depth position shifts towards higher r-values. These show the strong dependency of depth position of effective interatomic pair potential on effective valence Z_{eff}.

The phonon eigen frequencies for longitudinal and transverse phonon modes calculated using HB approach with the five screening functions are shown in Fig. 4 to study the screening influences for Ca$_{70}$Mg$_{30}$ glass. It is seen from Fig. 4 that, the inclusion of exchange and correlation effects enhances the phonon frequencies in both longitudinal and transverse branches. The present results of PDC due to T, IU and F-functions are lying between those due to H
and S-screening. The first minimum in the longitudinal branch is around at \(q \approx 1.6 \text{ Å}^{-1} \) for H, \(q \approx 2.8 \text{ Å}^{-1} \) for T, \(q \approx 2.9 \text{ Å}^{-1} \) for IU and F and \(q \approx 2.7 \text{ Å}^{-1} \) for S-local field correction function. The influence of various screening functions on \(\omega_L \) at first peak on PDC with respect to H-screening is 464.65\% for T, 375.94\% for IU, 312.13\% for F and 685.73\% for S-screening. The same influence on \(\omega_T \) at \(q \approx 1.0 \text{ Å}^{-1} \) due to T-dielectric function is 309.70\%, for IU is 239.86\%, for F is 194.27\% and for S-screening is 486.56\%.

The PDC due to three approaches (HB, TG, BS) with S-local field correction function are shown in Fig. 5 for Ca\(_{70}\)Mg\(_{30}\) glass. It is observed from the Fig. 5 that, the oscillations are more prominent in the longitudinal phonon modes as compared to the transverse modes in all three approaches. This shows the existence of collective excitations at larger momentum transfer due to longitudinal phonons only and the instability of the transverse phonons due to the anharmonicity of the atomic vibrations in the metallic systems. Moreover, the present outcome of both the phonon modes due to HB and TG approaches are more enhances than due to BS approach. The first plunges in the longitudinal branch falls at \(q \approx 1.8 \text{ Å}^{-1} \) for BS, \(q \approx 2.6 \text{ Å}^{-1} \) for TG and \(q \approx 2.7 \text{ Å}^{-1} \) for HB approach. The first crossover position of \(\omega_L \) and \(\omega_T \) in the HB, TG and BS approaches are observed, respectively, at 2.1 Å\(^{-1}\), 1.9 Å\(^{-1}\) and 1.2 Å\(^{-1}\). The presently computed values are compared with experimental [5] and theoretical results of Hafner [6] and others [8–10]. It is apparent from the Fig. 5 that, the position of first peak obtained with the help of HB and TG approaches are closer to each other but their results are differing from each other substantially. It is also evident that the modes due to HB and BS approaches are suppressed in contrast to TG approach. Compared to the results reported by Hafner [14] which overestimates the experimental results, the present theoretical results of BS approach are found quite satisfactory with the experimental data of Suck et al. [5] and others [6, 8–10].

The results shown in Fig. 6 are the phonon frequencies of Ca\(_{70}\)Zn\(_{30}\) glass generated using HB approach with the five screening functions for studying the screening influence. It is seen that the inclusion of exchange and correlation effect enhances the phonon frequencies in both longitudinal as well as transverse branches. The first minimum in the longitudinal branch is around at \(q \approx 1.6 \text{ Å}^{-1} \) for H, \(q \approx 2.8 \text{ Å}^{-1} \) for T, \(q \approx 2.9 \text{ Å}^{-1} \) for IU and F, \(q \approx 2.8 \text{ Å}^{-1} \) for S-local field correction function. The variation of \(\omega_L \) at first peak due to T-dielectric function is 306.17\%, for IU is 231.87\%, for F is 197.31\% and for S-screening is 626.95\% with respect to H-dielectric. The same variation on \(\omega_T \) at \(q \approx 1.0 \text{ Å}^{-1} \) with respect to H-screening is 197.31\% for T, 139.14\% for IU, 114.19\% for F and 357.14\% for S-screening.
Fig. 5 – Phonon Dispersion Curves for Ca70Mg30 Glass.

Fig. 6 – Screening influence on phonon dispersion curves of Ca70Zn30 Glass.

Fig. 7 is drawn to study the effect of three approaches (HB, TG and BS), where the results due to S-correction function is shown for Ca70Zn30 glass. It is observed that the oscillations are foremost in the longitudinal phonon modes as compared to the transverse mode in all three approaches. Moreover, the present outcome of ω_L and ω_T due to HB and TG approaches are enhanced than BS approach. The first immerse in the longitudinal branch falls at $q \approx 1.8 \, \text{Å}^{-1}$ for BS, $q \approx 2.7 \, \text{Å}^{-1}$ for TG and $q \approx 2.8 \, \text{Å}^{-1}$ for HB approach. The first crossing point of ω_L and ω_T in the HB, TG and BS approaches are observed at 2.1 $\, \text{Å}^{-1}$, 2.1 $\, \text{Å}^{-1}$ and 1.5 $\, \text{Å}^{-1}$, respectively.

To study the screening influence on the phonon eigen frequencies, the longitudinal and transverse phonon modes using HB approach for Ca60Al40 glass are shown in Fig. 8. The enhancement in both the phonon branches is concluded due to the effect of exchange and correlation functions. The present results of PDC
due to T, IU and F-function are lying between those due to H and S-screening. The first minimum in the longitudinal branch is around at $q \approx 1.6$ Å$^{-1}$ for H, $q \approx 2.4$ Å$^{-1}$ for T and F, $q \approx 2.5$ Å$^{-1}$ for IU and $q \approx 2.8$ Å$^{-1}$ for S-local field correction function. At first peak, the screening influence on ω_L with respect to H-screening is 72.09% in the case of T-function, 66.41% in the case of IU-function, 71.55% in the case of F-function and 72.76% in the case of S-function. Such influence on ω_L at $q \approx 1.0$ Å$^{-1}$ due to T-screening is 46.23%, for IU is 40.00%, for F is 44.98% and for S-screening is 78.64% with respect to H-dielectric function.

The PDC due to three approaches (HB, TG, BS) for Ca$_{60}$Al$_{40}$ glass are shown in Fig. 9. It is observed that the dispersion of the longitudinal phonons show oscillatory behaviour for large q-values while the transverse phonons show hardly any oscillatory behaviour to higher q-values \textit{i.e.} transverse phonon behaviour.
is monotonic at higher q. The first depth in the longitudinal branch occurs at $q \approx 1.6 \, \text{Å}^{-1}$ for BS, $q \approx 2.9 \, \text{Å}^{-1}$ for TG and $q \approx 2.8 \, \text{Å}^{-1}$ for HB approach. The first crossover location of ω_L and ω_T in three approaches is observed at $2.2 \, \text{Å}^{-1}$, $2.2 \, \text{Å}^{-1}$ and $1.6 \, \text{Å}^{-1}$, respectively.

The PDC shows the existence of collective excitations at larger momentum transfer due to longitudinal phonons only and the instability of the transverse phonons due to the anharmonicity of the atomic vibrations in the metallic systems. Actually, Neutron Inelastic Scattering (NIS) experiments on Mg$_{70}$Zn$_{30}$ glass, by Suck et al. [5] have exposed vigorously low-lying short wavelength collective density excitation at wave vector transfer where the structure factor shows its main peak, which are called phonon-roton states [5]. The difference in the magnitude of the minimum around $2k_F$ seems to be due to the fact that the concept of roton has not been taken into account theoretically.
As shown in Fig. 10, the exchange and correlation functions also affect the anomalous behaviour (i.e. deviation from the T^3 law) which is observed in the vibrational part of the specific heat (C_V) for Ca$_{70}$Mg$_{30}$ glass. The reason behind the anomalous behaviour may be due to the low frequency modes modify the generalized vibrational density of states of the glass with that of the polycrystal. These modes are mainly responsible for the difference in the temperature dependence of the vibrational part of the specific heat which departs from the normal behaviour. For Ca$_{70}$Zn$_{30}$ glass, the $C_V/T \to T^2$ relation is shown in Fig. 11. For all the three approaches as temperature increases, the initial rise in specific heat is observed at low temperature region and then it decreases. This observation is deviated for S-screening in HB and TG approaches, where very high bump in C_V/T for low temperature is absent. The temperature dependence of $C_V(T)$ is drawn in Fig. 12 for Ca$_{60}$Al$_{40}$ glass. As temperature increases $C_V(T)$
for S-screening function shows high bump at low temperature region in the case of TG and BS approaches.

Furthermore, the thermodynamic and elastic properties estimated from the elastic part of the PDC are tabulated in Table 2. Among the five screening functions, the results of ν_L and ν_T are influenced more due to S-function. The comparison with other such results [5, 8] favours the present calculation and suggests that proper choice of dielectric screening is important part for explaining the thermodynamic and elastic properties of Ca$_{70}$Mg$_{30}$ glass.

Table 2

<table>
<thead>
<tr>
<th>App.</th>
<th>SCR</th>
<th>$\nu_L \times 10^5$ cm/sec</th>
<th>$\nu_T \times 10^5$ cm/s</th>
<th>$B_T \times 10^{11}$ dyne/cm2</th>
<th>$G \times 10^{11}$ dyne/cm2</th>
<th>σ</th>
<th>$Y \times 10^{11}$ dyne/cm2</th>
<th>θ_D (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>H</td>
<td>1.2474</td>
<td>0.7202</td>
<td>0.1391</td>
<td>0.0835</td>
<td>0.2499</td>
<td>0.2087</td>
<td>71.82</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>3.9991</td>
<td>2.3089</td>
<td>1.4297</td>
<td>0.8578</td>
<td>0.2499</td>
<td>2.1445</td>
<td>230.25</td>
</tr>
<tr>
<td></td>
<td>IU</td>
<td>3.3013</td>
<td>1.9060</td>
<td>0.9743</td>
<td>0.5846</td>
<td>0.2500</td>
<td>1.4615</td>
<td>190.07</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>2.8585</td>
<td>1.6503</td>
<td>0.7305</td>
<td>0.4383</td>
<td>0.2500</td>
<td>1.0957</td>
<td>164.58</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>5.7833</td>
<td>3.3390</td>
<td>2.9900</td>
<td>1.7940</td>
<td>0.2499</td>
<td>4.4850</td>
<td>332.97</td>
</tr>
<tr>
<td>TG</td>
<td>H</td>
<td>1.9214</td>
<td>1.1150</td>
<td>0.3273</td>
<td>0.2001</td>
<td>0.2461</td>
<td>0.4986</td>
<td>111.14</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>4.8782</td>
<td>2.8780</td>
<td>2.0521</td>
<td>1.3329</td>
<td>0.2330</td>
<td>3.2869</td>
<td>286.44</td>
</tr>
<tr>
<td></td>
<td>IU</td>
<td>4.2824</td>
<td>2.5199</td>
<td>1.5886</td>
<td>1.0218</td>
<td>0.2352</td>
<td>2.5241</td>
<td>250.86</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3.9697</td>
<td>2.3284</td>
<td>1.3726</td>
<td>0.8724</td>
<td>0.2378</td>
<td>2.1597</td>
<td>231.87</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>6.3999</td>
<td>3.8498</td>
<td>3.4110</td>
<td>2.3850</td>
<td>0.2165</td>
<td>5.8025</td>
<td>382.46</td>
</tr>
<tr>
<td>BS</td>
<td>H</td>
<td>5.4736</td>
<td>2.3214</td>
<td>3.6649</td>
<td>0.8671</td>
<td>0.3903</td>
<td>2.4112</td>
<td>235.73</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>5.2153</td>
<td>1.7023</td>
<td>3.7550</td>
<td>0.4663</td>
<td>0.4404</td>
<td>1.3433</td>
<td>174.03</td>
</tr>
<tr>
<td></td>
<td>IU</td>
<td>5.4166</td>
<td>2.0037</td>
<td>3.8598</td>
<td>0.6461</td>
<td>0.4207</td>
<td>1.8358</td>
<td>204.32</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>5.3318</td>
<td>1.9919</td>
<td>3.7231</td>
<td>0.6385</td>
<td>0.4189</td>
<td>1.8118</td>
<td>203.07</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>5.1779</td>
<td>1.6787</td>
<td>3.7097</td>
<td>0.4534</td>
<td>0.4413</td>
<td>1.3071</td>
<td>171.64</td>
</tr>
<tr>
<td>Others</td>
<td>[5, 8]</td>
<td>5.66, 4.67</td>
<td>3.55, 2.34</td>
<td>1.80</td>
<td>1.49</td>
<td>0.17</td>
<td>3.50</td>
<td>–</td>
</tr>
</tbody>
</table>

It is noticed from Table 3 for Ca$_{70}$Zn$_{30}$ glass that the ν_L and ν_T for HB and TG approaches are influenced significantly by various exchange and correlation functions as compare to BS approach. However, very high compressibility is observed for BS approach. As ν_L and ν_T are depend on the nature of screening as well as the method adopted, the other thermodynamic and elastic properties are also reflecting the same behaviour.

From the elastic limit of the PDC, the thermodynamic and elastic properties for Ca$_{60}$Al$_{40}$ glass are calculated and shown in Table 4. The compressibility B_T affects largely by S-screening in HB approach as compare to others.
Table 3
Thermodynamic and Elastic properties of Ca$_{70}$Zn$_{30}$ Metallic Glass

<table>
<thead>
<tr>
<th>App.</th>
<th>SCR</th>
<th>$v_L \times 10^5$ cm/sec</th>
<th>$v_T \times 10^5$ cm/s</th>
<th>$B_T \times 10^{11}$ dyne/cm2</th>
<th>$G \times 10^{11}$ dyne/cm2</th>
<th>σ</th>
<th>$Y \times 10^{11}$ dyne/cm2</th>
<th>θ_D (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>H</td>
<td>0.9803</td>
<td>0.5660</td>
<td>0.1285</td>
<td>0.0771</td>
<td>0.2499</td>
<td>0.1928</td>
<td>58.42</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>2.2841</td>
<td>1.3188</td>
<td>0.6977</td>
<td>0.4186</td>
<td>0.2499</td>
<td>1.0465</td>
<td>136.13</td>
</tr>
<tr>
<td>IU</td>
<td>1.8280</td>
<td>1.0554</td>
<td>0.4469</td>
<td>0.2681</td>
<td>0.2499</td>
<td>0.6703</td>
<td>108.95</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.6374</td>
<td>0.9454</td>
<td>0.3585</td>
<td>0.2151</td>
<td>0.2499</td>
<td>0.5378</td>
<td>97.58</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>3.5473</td>
<td>2.0480</td>
<td>1.6826</td>
<td>1.0096</td>
<td>0.2500</td>
<td>2.5240</td>
<td>211.41</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>H</td>
<td>1.5557</td>
<td>0.9006</td>
<td>0.3223</td>
<td>0.1952</td>
<td>0.2480</td>
<td>0.4873</td>
<td>92.94</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>2.2458</td>
<td>1.3027</td>
<td>0.6693</td>
<td>0.4085</td>
<td>0.2464</td>
<td>1.0183</td>
<td>134.42</td>
</tr>
<tr>
<td>IU</td>
<td>2.7705</td>
<td>1.6222</td>
<td>1.0030</td>
<td>0.6334</td>
<td>0.2392</td>
<td>1.5698</td>
<td>167.24</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.6838</td>
<td>1.5683</td>
<td>0.9444</td>
<td>0.5920</td>
<td>0.2407</td>
<td>1.4690</td>
<td>161.71</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>4.0634</td>
<td>2.4601</td>
<td>2.0320</td>
<td>1.4567</td>
<td>0.2107</td>
<td>3.5273</td>
<td>252.82</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>H</td>
<td>4.9287</td>
<td>2.1162</td>
<td>4.4098</td>
<td>1.0779</td>
<td>0.3870</td>
<td>2.9901</td>
<td>222.34</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>4.6220</td>
<td>1.4394</td>
<td>4.4771</td>
<td>0.4987</td>
<td>0.4463</td>
<td>1.4425</td>
<td>152.44</td>
</tr>
<tr>
<td>IU</td>
<td>4.8145</td>
<td>1.7095</td>
<td>4.6413</td>
<td>0.7034</td>
<td>0.4279</td>
<td>2.0088</td>
<td>180.62</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4.7603</td>
<td>1.7137</td>
<td>4.5120</td>
<td>0.7069</td>
<td>0.4256</td>
<td>2.0154</td>
<td>181.00</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>4.5767</td>
<td>1.4822</td>
<td>4.3367</td>
<td>0.5288</td>
<td>0.4414</td>
<td>1.5244</td>
<td>156.87</td>
<td></td>
</tr>
</tbody>
</table>

Table 4
Thermodynamic and Elastic Properties of Ca$_{60}$Al$_{40}$ Metallic Glass

<table>
<thead>
<tr>
<th>App.</th>
<th>SCR</th>
<th>$v_L \times 10^5$ cm/sec</th>
<th>$v_T \times 10^5$ cm/s</th>
<th>$B_T \times 10^{11}$ dyne/cm2</th>
<th>$G \times 10^{11}$ dyne/cm2</th>
<th>σ</th>
<th>$Y \times 10^{11}$ dyne/cm2</th>
<th>θ_D (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>H</td>
<td>2.1500</td>
<td>1.2413</td>
<td>0.4587</td>
<td>0.2752</td>
<td>0.2500</td>
<td>0.6880</td>
<td>128.78</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>2.7311</td>
<td>1.5768</td>
<td>0.7401</td>
<td>0.4441</td>
<td>0.2500</td>
<td>1.1102</td>
<td>163.59</td>
</tr>
<tr>
<td>IU</td>
<td>2.5999</td>
<td>1.5010</td>
<td>0.6707</td>
<td>0.4024</td>
<td>0.2500</td>
<td>1.0060</td>
<td>155.73</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.6773</td>
<td>1.5458</td>
<td>0.7113</td>
<td>0.4268</td>
<td>0.2499</td>
<td>1.0669</td>
<td>160.37</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>3.1795</td>
<td>1.8357</td>
<td>1.0031</td>
<td>0.6019</td>
<td>0.2499</td>
<td>1.5047</td>
<td>190.45</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>H</td>
<td>3.5391</td>
<td>2.0550</td>
<td>1.2314</td>
<td>0.7543</td>
<td>0.2457</td>
<td>1.8792</td>
<td>213.10</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>5.0526</td>
<td>2.9431</td>
<td>2.4969</td>
<td>1.5470</td>
<td>0.2432</td>
<td>3.8466</td>
<td>305.10</td>
</tr>
<tr>
<td>IU</td>
<td>4.9460</td>
<td>2.9058</td>
<td>2.3585</td>
<td>1.5081</td>
<td>0.2364</td>
<td>3.7294</td>
<td>301.00</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5.0580</td>
<td>2.9755</td>
<td>2.4610</td>
<td>1.5813</td>
<td>0.2354</td>
<td>3.9071</td>
<td>308.18</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>5.1593</td>
<td>3.0583</td>
<td>2.5269</td>
<td>1.6705</td>
<td>0.2291</td>
<td>4.1066</td>
<td>316.53</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>H</td>
<td>7.1465</td>
<td>3.2489</td>
<td>6.6082</td>
<td>1.8852</td>
<td>0.3697</td>
<td>5.1645</td>
<td>342.27</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>5.5428</td>
<td>1.3798</td>
<td>5.0339</td>
<td>0.3400</td>
<td>0.4670</td>
<td>0.9976</td>
<td>147.22</td>
</tr>
<tr>
<td>IU</td>
<td>5.7036</td>
<td>1.7848</td>
<td>5.0517</td>
<td>0.5689</td>
<td>0.4457</td>
<td>1.6451</td>
<td>189.96</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5.7241</td>
<td>1.8886</td>
<td>5.0028</td>
<td>0.6371</td>
<td>0.4389</td>
<td>1.8334</td>
<td>200.84</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>5.5616</td>
<td>1.1059</td>
<td>5.2333</td>
<td>0.2185</td>
<td>0.4794</td>
<td>0.6464</td>
<td>118.15</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

Three Ca-based metallic glasses are having important engineering application in the fields of materials science and technology. Therefore, it can be conclude that, as phonon dynamics and elastic properties of all these glasses have not been investigated theoretically previously. But the present study is very useful to form a set of theoretical data of particular glass and the present computations are also confirms the applicability of model potential in the aforesaid properties. Also, the PDC generated from three approaches reproduce all the broad characteristics of dispersion curves. But, the BS approach is found more qualitative than the others. The well known model potential with advanced IU, F and S-local field correction functions generates consistent results regarding the phonon dynamics of the metallic glasses. Such study on phonon dynamics of other binary liquid alloys and metallic glasses is in progress.

REFERENCES