MESONIC SUPER-ČERENKOV-LIKE EFFECTS IN HADRONIC AND NUCLEAR MEDIA

D.B. ION\(^{1,2}\), M.L. ION\(^{3}\)

\(^{1}\)National Institute for Physics and Nuclear Engineering Horia Hulubei, IFIN-HH, Bucharest, P.O. Box MG-6, Magurele, Romania
\(^{2}\)Academy of Romanian Scientist (A.O.S.R.)
\(^{3}\)Faculty of Physics, Bucharest University, Bucharest, Romania

Received March 10, 2010

Generalized mesonic Super-Čerenkov Radiations (SČR), as well as their SČR-signatures are investigated. Two general SČR-coherence conditions are found as two natural extremes of the same spontaneous particles decays in (nuclear or subnuclear) media. The positions of the pionic SČR-bands in the mesonic and baryonic SČR-sectors are estimated. The interpretation of the observed (at RHIC) two bump structure of the azimuthal distributions near the away-side jets as experimental evidence for the two SČR-mesonic components, is suggested.

Key words: Pionic Super-Čerenkov radiation, Nuclear pionic Čerenkov-like radiation (NPIČR), SČR-mesonic sectors.

We recall here that idea that meson production in nuclear interactions may be described as a process similar to the Čerenkov radiation has been considered by Wada (1949), Ivanenko (1949) Blohintev and Indenbom (1950), Čyz, Ericson, Glashow (1959), Smrz (1962) and D.B. Ion (1969–1970). For the many detailed results on mesonic Čerenkov-like effect see Refs. [1–3,5,9–13] presented in Fig. 1 while for the generalized Super-Čerenkov see Refs. [14–15]. In Ref. [1] from Fig. 1 D.B. Ion developed a general classical and quantum theory of the mesonic Čerenkov-like radiation in hadronic and nuclear media. Moreover, the vector-mesonic Čerenkov-like radiation as well as baryonic Čerenkov-like effects in nuclear and hadronic media were also introduced for the first time in Ref. [1–2, Fig. 1]. Then, it was predicted completely the properties of the mesonic Čerenkov-like radiation in the case when the mesonic refractive index is given by a single pole approximation. Then, they obtained a good agreement with the integrated cross section of the single meson production in the hadronic collisions (see Fig. 9 from Ref. [1]).

In 1990–1995, we have extended [1–7] these ideas to the nuclear media where the pionic (NPIČR) and gamma Čerenkov radiation (NGČR) should be possible to be emitted from charged particles moving through nuclei with a velocity larger than the phase velocity of photons or/and pions in the nuclear media. The refractive indices of the gamma (\( n_\gamma \)), meson (\( n_\pi \)), nucleon (\( n_N \)), was calculated by using Foldy-Lax
Fig. 1 – Selected bibliography for introduction in the generalized Super-Čerenkov-like radiations.

Bibliography for Introduction in Super-Čerenkov Radiation


(i) The energy behavior of the pionic refractive index is presented in Fig. 2a;
(ii) The true coherent pion emission as nuclear pionic Čerenkov radiation (NPIČR) is possible in the following three energy bands (see Fig. 2b):
- ČB1-NPIČR band for: 190MeV ≤ ω ≤ 315MeV for all π^0,
- ČB2-NPIČR band for: 910MeV ≤ ω ≤ 960MeV only for π^+, and
- ČB3-NPIČR band for: 80GeV ≤ ω ≤ 1000GeV for all π^±.

in the nuclear reactions such as: \( N + ^{208}Pb \rightarrow \pi N + ^{208}Pb \).

Here, it is important to note that, for the nucleon laboratory momenta \( p_{LAB} \geq 80\text{GeV}/c \), we predict that the all above SČR-pionic bands will be enlarged since the physical domain is given by \( v_{\pi k}(\omega)/v_{\pi}\text{Re}n_{\pi}(E_{\pi}) \leq \cos \theta_{\pi \pi} \leq 1 \) and \( \text{Re}n_{\pi}(E_{\pi}) \geq 1 \) (see the results from Fig. 4).

(iii) The NPIČR-must be coplanar with the incoming and outgoing projectile possessing a strong correlation between the angle of emission \( (\theta, \omega) \) and the pion \( (\omega) \) and projectile \( (T_{p}) \) energies (see Fig. 3).
(iv) For the ČB1 the NPIČR-differential cross section are peaked (see Ref. [4]) at the energy $\omega_m = 260 \text{ MeV}$ for ČB1 band and $\omega_m = 930 \text{ MeV}$ for ČB2 band when the absorption is neglected and the peak position is shifted up to $\omega_m = 240 \text{ MeV}$ for ČB1-band when the absorption is taken into account. As we already mentioned in Ref. [1], these predictions were experimentally confirmed (see Fig. 10 in [1]) by the Dubna group (see E.K. Sarkisyan et al., Phys. Lett. B471 (1999) 257). So, they obtained a good agreement with the position and width of the first pionic Čerenkov-like band predicted in Ref. [4].

(v) A summary of the theoretical results on pionic Super-Čerenkov-like radiation in (hadronic or nuclear) media is presented in Fig. 4. The factor $S$ is the spin factor while $\Theta(1 - \cos \theta_{SC})$ is the Heaviside step function. In fact the entire quantum theory of the exotic decay: $B_1(\vec{p}_1, E_1) \rightarrow \pi(\vec{k}, \omega)B_2(\vec{p}_2, E_2)$, where $B_1$ and $B_2$ are spin $\frac{1}{2}$ baryons, can be developed just as in Ref. [4]. So, by using the inequality: $\cos \theta_{SC} \approx v_{apb} V_{ph} \leq 1$, two general SCR-coherence conditions corresponding to the (mesonic and baryonic) – Čerenkov-like effects, are found (see Fig. 4) as two natural extremes of the same spontaneous particles decays in medium.
(vi) Next, it is important to remark that the baryonic SČR-sector will appear especially for incident nucleons with $p_{LAB}$ higher than 100 GeV/c where we found that the baryonic SČR-conditions: and $R_{ν_{p}}(E_{ν})/\nu_{1} \leq \cos θ_{12} \leq 1$ and $\text{Re} n_{ν}(E_{ν}) \geq 1$, are satisfied with high accuracy.

(vii) It is well known that the recent RHIC experiments [6, 7] have shown two bump structure of the azimuthal distributions near the away-side jets. This structure was interpreted by Dremin [8] as being the signature of the Čerenkov gluons. But, it is easy to see that, these two bump distributions can be interpreted in more exact way: as signature of the two components of the SČR-gluons. However, the more realistic interpretation of these experimental results as signature of the generalized mesonic SČR-effects cannot be avoided. Of course more theoretical and experimental investigations are necessary to clarify the problems of the generalized SČR-gluons emissions in hadronic media.

Acknowledgments. This research was supported by CNCSIS under contract ID-52-283/2007.
Fig. 4 – Summary of the theoretical results on pionic Super-Čerenkov-like radiation in (hadronic, nuclear) media.

REFERENCES