Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. In this paper, the Omega and Sadhana polynomials of a new infinite class of fullerenes constructed by leapfrog principle is computed.

Key words: Omega Polynomial, Sadhana Polynomial, Fullerene Graph.

1. INTRODUCTION

A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal faces and hexagonal faces. Let F_n be a fullerene graph with n vertices. By the Euler formula one can see that F_n has 12 pentagonal and $n/2 - 10$ hexagonal faces.

Let $G = (V, E)$ be a connected graph with the vertices set $V = V(G)$ and the edges set $E = E(G)$, without loops and multiple edges. The distance $d(x,y)$ between x and y is defined as the length of a minimum path between x and y. Two edges $e = ab$ and $f = xy$ of G are called codistant, "e co f", if and only if $d(a,x) = d(b,y) = k$ and $d(a,y) = d(b,x) = k + 1$ or vice versa, for a non-negative integer k. It is easy to see that the relation "co" is reflexive and symmetric but it is not necessary to be transitive. Set $C(e) = \{f \in E(G) : f \ co \ e\}$. If the relation "co" is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut "oc" of the graph G. The graph G is called co-graph if and only if the edge set $E(G)$ a union of disjoint orthogonal cuts. If any two consecutive edges of an edge-cut sequence are topologically parallel within the same face of the covering, such a sequence is called a quasi-orthogonal cut qoc strip. The Omega polynomial has been defined on the ground of qoc strips [1-5]:

$$\Omega(G, x) = \sum m_x e^x.$$
In a counting polynomial, the first derivative (in $x = 1$) defines the type of property which is counted, namely:

$$\Omega(G,1) = \sum c.m.c = e = |E(G)|.$$

The Sadhana index $Sd(G)$ for counting qoc strips in G was defined by Khadikar et al. [6-9] as $Sd(G) = \sum c.m(G,c)(|E|-c)$. We now define the Sadhana polynomial of a graph G as $Sd(G,x) = \sum c.mx^{E-c}$. By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing x^c with $x^{(|E|-c)}$ in omega polynomial. Then the Sadhana index will be the first derivative of $Sd(G,x)$ evaluated at $x = 1$.

Let G be a fullerene graph on n vertices. A leapfrog transform G' of G is a graph on $3n$ vertices obtained by truncating the dual of G. Hence, $G' = Tr(G^*)$, where G^* denotes the dual of G. It is easy to check that G' itself is a fullerene graph. We say that G' is a leapfrog fullerene obtained from G and write $G' = Le(G)$. In the other word, for a given fullerene F_n put an extra vertex into the centre of each face of F_n. Then connect these new vertices with all the vertices surrounding the corresponding face. Then the dual polyhedron is again a fullerene having $3n$ vertices 12 pentagonal and $(3n/2)-10$ hexagonal faces. From Fig. 1, one can see that $Le(C_{20}) = C_{60}$. For a more thorough introduction and treatment of leapfrog fullerenes we refer the reader to [10 - 12]. Through this paper all notations are standard and mainly taken from [13, 14].

![Fig. 1 – The leapfrog of graphs F_{24} and F_{30}](image-url)
2. MAIN RESULTS AND DISCUSSIONS

The aim of this paper is computing Omega and Sadhana polynomials of leapfrog fullerene $F_{24,3^n}$ constructed by F_{24}. In the other word by using the leapfrog principle we can construct an infinite class of fullerenes and so we compute the Omega and Sadhana polynomials of $F_{24,3^n}$. To do it at first we should consider the following examples.

Example 1. Let F_{20} be a fullerene with 20 vertices depicted in Fig. 2. It is easy to see that $|E(F_{20})| = 30$. By computing the quasi-orthogonal cut qoc strips of F_{20} one can see that the Omega and Sadhana polynomials are as $Ω(F_{20}, x) = 30x$ and $Sd(F_{20}, x) = 30x^{39}$.

![Fig. 2 – The graph of fullerene F_{20}](image)

Example 2. Consider the fullerene graph F_{24}. This fullerene graph has 36 edges. Similar to example 1 one can see that $Ω(F_{24}, x) = 24x + 6x^3$ and so, $Sd(F_{24}, x) = 24x^{35} + 6x^{34}$. In Fig. 3 one can see the F_{24} and $Le(F_{24})$.

![Fig. 3 – The leapfrog of graph F_{24}](image)

By continuing this method we achieve the graph of fullerene $F_{24,3^n}$. For computing the Omega and Sadhana polynomials we have to consider two cases. At first let n
be an even number. By Fig. 4(ii), it is easy to see that there are four types of edges for qoc strips. We denote them by e_1, e_2, e_3 and e_4 in which $|C(e_1)| = 3^{n/2}$, $|C(e_2)| = 2 \times 3^{n/2}$, $|C(e_3)| = 2 \times 3^{n/2+1}$ and $|C(e_4)| = 10 \times 3^{n/2+1}$. In the other word there are 24, 6, 3$^{n/2-1}$ and 3$^{n/2-1}$ edges of type e_1, e_2, e_3 and e_4, respectively. Now let n be an odd number Fig. 4(i). By the same way we can see there are three types of edges for qoc strips. We name them by e_1, e_2, and e_3. It is not difficult to see $|C(e_1)| = 3^{(n+1)/2}$, $|C(e_2)| = 2 \times 3^{(n+1)/2}$ and $|C(e_3)| = 2 \times 3^{(n+5)/2}$ and there are 24, 6, 3$^{n/2-1}$ and 2$\times 3^{(n-1)/2-1}$ edges of type e_1, e_2, and e_3, respectively. Hence, we proved the following theorem:

Theorem. Consider the fullerene graph F_{24x3^n} $(n \geq 3)$ depicted in Fig. 4. Then the Omega polynomial is as follows:

$$\Omega(F_{24x3^n}, x) = \begin{cases}
24x^{3^{n/2}} + 6x^{2\times3^{n/2}} + (3^{n/2} - 1)(x^{2\times3^{(n+1)/2}} + x^{10\times3^{(n+1)/2}}) 2 \mid n \\
24x^{3^{(n+1)/2}} + 6x^{2\times3^{(n+1)/2}} + 2(3^{(n-1)/2} - 1)x^{2\times3^{(n+5)/2}} 2 \mid n
\end{cases}$$

Corollary. For the fullerene graph F_{24x3^n} $(n \geq 3)$ the Sadhana polynomial is as follows:

$$Sd(F_{24x3^n}, x) = \begin{cases}
24x^{E(3^{n/2})} + 6x^{E(2\times3^{n/2})} + (3^{n/2} - 1)(x^{E(2\times3^{(n+1)/2})} + x^{E(10\times3^{(n+1)/2})}) 2 \mid n \\
24x^{E(3^{(n+1)/2})} + 6x^{E(2\times3^{(n+1)/2})} + 2(3^{(n-1)/2} - 1)x^{E(2\times3^{(n+5)/2})} 2 \mid n
\end{cases}$$

Fig. 4 – (i). The graph of F_{24x3^n} for $n = 3$.
Fig. 4 – (ii). The graph of $F_{24,5}$ for $n = 4$.
REFERENCES