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Abstract. The real Jacobi groupGJ
1 (R) = SL(2,R)nH1, where H1 denotes the

3-dimensional Heisenberg group, is parametrized by the S-coordinates (x,y,θ,p,q,κ).
We show that the parameter η that appears passing from Perelomov’s un-normalized
coherent state vector based on the Siegel–Jacobi disk DJ

1 to the normalized one is
η = q+ip. The two-parameter invariant metric on the Siegel–Jacobi upper half-plane

XJ
1 =

GJ
1 (R)

SO(2)×R is expressed in the variables (x,y,Re η, Im η). It is proved that the

five dimensional manifold X̃J
1 =

GJ
1 (R)

SO(2)
≈XJ

1 ×R, called extended Siegel–Jacobi up-
per half-plane, is a reductive, non-symmetric, non-naturally reductive manifold with
respect to the three-parameter metric invariant to the action of GJ

1 (R), and its geodesic
vectors are determined.

Key words: Jacobi group, invariant metric, Siegel–Jacobi upper half-plane,
extended Siegel–Jacobi upper half-plane, naturally reductive
manifold, g. o. space, geodesic vector, coherent states.

1. INTRODUCTION

The Jacobi group is defined as the semi-direct product of the Heisenberg group
and the symplectic group of appropriate dimension. The Jacobi group is intensively
studied in Mathematics, Theoretical and Mathematical Physics [1–12]. We have
studied the Jacobi group GJn := Hno Sp(n,R)C, where Hn denotes the (2n+ 1)-
dimensional Heisenberg group and Sp(n,R)C := Sp(n,C)∩U(n,n) [13, 14].

The real Jacobi group of degree n is defined as GJn(R) := Sp(n,R)nHn(R),
where Sp(n,R)C and GJn are isomorphic to Sp(n,R) and GJn(R) respectively as real
Lie groups, see [15, Proposition 2], [5, 10]. To simplify the notation we will denote
in the following Hn(R) also with Hn.

The Siegel-Jacobi ballDJn is aGJn-homogeneous manifold, whose points are in
Cn×Dn [13], whereDn ≈ Sp(n,R)C/U(n) denotes the Siegel (open) ball of degree
n [16].

The Jacobi group is a unimodular, non-reductive, algebraic group of Harish-
Chandra type [5, 17–21], and DJn is a reductive, non-symmetric manifold associated
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to the Jacobi group GJn by the generalized Harish-Chandra embedding [2, 3]. The
holomorphic irreducible unitary representations of GJn based on DJn constructed in
[5, 6, 22–24] are relevant to important areas of mathematics such as Jacobi forms,
automorphic forms, L-functions and modular forms, spherical functions, the ring of
invariant differential operators, theta functions, Hecke operators, Shimura varieties
and Kuga fiber varieties.

The Jacobi group was investigated by mathematicians [25–28] in the context
of coherent states (CS) [29–31]. Some CS systems based on DJn have been consi-
dered in the framework of quantum mechanics, geometric quantization, dequantiza-
tion, quantum optics, squeezed states, quantum teleportation, quantum tomography,
nuclear structure, signal processing, Vlasov kinetic equation [32–38].

The starting point in Perelomov’s approach to CS is the triplet (G,π,H), where
π is a unitary, irreducible representation of the Lie group G on a separable complex
Hilbert space H [31].

Two types of CS-vectors belonging to H are locally defined on M =G/H: the
normalized (un-normalized) CS-vector ex (respectively, ez)

ex = exp(
∑
φ∈∆+

xφX
+
φ − x̄φX

−
φ )e0, ez = exp(

∑
φ∈∆+

zφX
+
φ )e0, (1)

where e0 is the extremal weight vector of the representation π, ∆+ is the set of posi-
tive roots of the Lie algebra g, and X+

φ (X−φ ) are the positive (respectively, negative)
generators. For X ∈ g we denoted in (1) X := dπ(X) [31, 39, 40].

In the standard procedure of CS, the G-invariant Kähler two-form on a 2n-
dimensional homogeneous manifold M =G/H is obtained from the Kähler poten-
tial f via the recipe

− iωM =∂∂̄f, f(z, z̄) = logK(z, z̄), K(z, z̄) :=(ez,ez), (2a)

ωM (z,z̄)=i
∑
α,β

hαβ̄dzα∧dz̄β, hαβ̄=
∂2f

∂zα∂z̄β
, hαβ̄= h̄βᾱ, α,β=1,. . . ,n, (2b)

whereK(z, z̄) is the scalar product of two un-normalized Perelomov’s CS-vectors ez
at z ∈M [2, 13, 31].

It is well known, see [41, Theorem 4.17], [42, Proposition 20], [43, eq. (6), p.
156], that the condition dω = 0 for a Hermitian manifold to have a Kähler structure
is equivalent with the conditions

∂hαβ̄
∂zγ

=
∂hγβ̄
∂zα

, or
∂hαβ̄
∂zγ

=
∂hαγ̄
∂zβ̄

, α,β,γ = 1, . . . ,n. (3)

In accord with [41, p. 42], [42, Appendix B], [44, p. 28], the Riemannian
metric associated with the Hermitian metric on the manifold M in local coordinates
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is

ds2
M (z, z̄) =

∑
α,β

hαβ̄dzα⊗dz̄β. (4)

Using the CS approach, in [1] we have determined the Kähler invariant two-
form ωDJ

1
(w,z) on the Siegel–Jacobi disk DJ1 =

GJ
1

U(1)×R ≈D1×C, where the Siegel
disk D1 is realized as {w ∈ C| |w| < 1}. In [1, 15, 45] we applied the partial
Cayley transform to ωDJ

1
(w,z) and we obtained the Kähler invariant two-form on

the Siegel–Jacobi upper half-plane X J1 =
GJ

1 (R)
SO(2)×R ≈ X1×R2, firstly determined by

Kähler and Berndt [6, 46–50], whereX1 denotes the Siegel upper half-plane, realized
as {v ∈C| Imv > 0}. The construction has been generalized in [13, 14] for the Jacobi
group of degree n. In [2] we have underlined that the metric associated to the Kähler
two-form on the Siegel–Jacobi ball DJn = GJ

n
U(n)×R is a balanced metric [51–53].

In [3] we introduced a five-dimensional manifold X̃ J1 =
GJ

1 (R)
SO(2) ≈ X1 × R3,

called extended Siegel–Jacobi upper half-plane. Because in Berezin’s approach to
CS on M = G/H traditionally are considered G-homogeneous Kähler metrics on
M , we were interested in determining the invariant metrics as well on X̃ J1 , so we had
to abandon Berezin’s procedure to obtain balanced metric via the CS approach based
on homogeneous Kähler manifolds [54–57] and we applied in [3] Cartan’s moving
frame method [58–60], which allows to determine invariant metrics on odd or even
dimensional manifolds.

Mathematicians consider the real Jacobi groupGJ1 (R) as subgroup of Sp(2,R).
We followed this approach in [3, 4], while in [1, 13–15, 45, 46] the Jacobi group
was investigated via the construction of Perelomov’s CS. We adopt the notation from
[6, 7] for the real Jacobi group GJ1 (R), realized as submatrices of Sp(2,R) of the
form

g =


a 0 b q
λ 1 µ κ
c 0 d −p
0 0 0 1

 , M =

(
a b
c d

)
, detM = 1, (5)

where

Y := (p,q) =XM−1 = (λ,µ)

(
a b
c d

)−1

= (λd−µc,−λb+µa) (6)

is related to the Heisenberg group H1 described by (λ,µ,κ). For coordinatization of
the real Jacobi group we adopt the so called S-coordinates (x,y,θ,p,q,κ) [6].

The present investigation is a continuation of [3], where we have obtained in-
variant metrics for several homogeneous manifolds associated with the real Jacobi
group. In particular, we have determined the 2 (3)–parameter invariant metric on
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X J1 , (respectively, X̃ J1 ). We proved in [3] that X J1 is a non-symmetric, not naturally
reductive space with respect to the balanced metric.

Below we motivate our interest for naturally reductive spaces.
We denoted by FC [14] the change of variables x→ z in formula (1) such that

ex = (ez,ez)
− 1

2 ez; z = FC(x). (7)
In Remark 3 of the paper [61], devoted to coherent states with support on Hermitian
symmetric spaces, we observed that

For symmetric manifolds the FC-transform gives geodesics (A)

i.e. for symmetric spaces M =G/H , the relation exp(tz(x)) = exp(tFC(x)) gives
geodesics through the identity of M . Assertion (A) was verified by direct calculation
for the complex Grassmann manifold Gn(Cm+n) = SU(n+m)

S(U(n)×U(m)) and its noncom-

pact dual SU(n,m)
S(U(n)×U(m)) [62]. Looking for a geometric meaning of the phase of the

scalar product of two un-normalized Perelomov’s CS-vectors [63, 64], in [63, Re-
mark 1] we showed that assertion (A) is true for a larger class of manifolds verifying
a technical condition which includes the naturally reductive spaces, a natural genera-
lization of symmetric spaces.

So we have the following sequence of space inclusions

Hermitian symmetric⊂ symmetric⊂ naturally reductive⊂ g. o.

Indeed, in [65, 66] we observed that the Hermitian symmetric spaces are in particular
naturally reductive spaces. Let M =G/H be a reductive Riemannian homogeneous
space [67]. We have the direct sum of non-intersecting vector spaces g = h⊕m,
and geodesics on naturally reductive manifolds M are obtained just by taking the
exponential of m [67]. We recall that the g. o. spaces are Riemannian homogeneous
spaces (M,g) with origin p= {H} where all the geodesics are orbits of one parame-
ter group of isometries exp(tZ), Z ∈m. X ∈ g\{0} is a geodesic vector if the curve
γ(t) = exp(tX)(p) is geodesic with respect to the Riemannian connection [68].

In [69, Lemma 3], [1, Lemma 6.11 and Remark 6.12] we proved that (C,D1)3
(z,w) = FC(η,w), but in [3, Proposition 5.8] we showed that X J1 is not naturally
reductive with respect to the balanced metric. Consequently, the FC-transform on
DJ1 does not generate geodesics as in (A), see also [70].

The paper is laid out as follows. In Section 2 we make several changes of
coordinates in the Kähler two-form ωDJ

1
which are used in Section 6. Section 3 (4),

extracted from [3], gives information on the embedding of H1 (respectively SL(2,R))
in Sp(2,R). Minimal information on the real Jacobi group as a subgroup of Sp(2,R)
is given in Section 5. Lemma 1, an enlarged and improved version of [3, Lemma 5.1],
establishes the action of the real Jacobi group on some of its homogeneous spaces.
In Proposition 2, an improved version of [3, Proposition 5.2], the fundamental vector
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fields (FVF) on homogeneous spaces associated to the Jacobi group are calculated.
Comment 1, Proposition 4 and Proposition 5 enrich the corresponding assertions in
[3]. In the last section, where geometric properties of the five dimensional manifold
X̃ J1 are investigated. We also present very sketchy the definitions of the mathematical
objects investigated here, see full details in [3] and the extended version [42]. The
paper is concluded with Comment 2.

The new results of the present paper are contained in: Remark 1, where we
emphasize that the S-variables p,q ∈ R have a “CS-meaning” given by the simple
relation η = q+ ip; item d) in Lemma 1; item g) in Proposition 2; equation (61d) in
Proposition 3; Proposition 4, which shows that the FVF determined in Proposition 2
f) are Killing vectors for the invariant metric on X̃ J1 ; Proposition 5, which shows that
the FVF determined in Proposition 2 g) are Killing vectors for the invariant metric
of GJ1 (R). In Theorem 1, which summarises the main results of the present paper,
we show that X̃ J1 is a non-symmetric, non-naturally reductive space with respect to
the three-parameter invariant metric. In the same theorem we determine also the
geodesic vectors on X̃ J1 .
Notation:

We denote by R, C, Z and N the field of real numbers, the field of complex
numbers, the ring of integers, and the set of non-negative integers, respectively. We
denote the imaginary unit

√
−1 by i, the real and imaginary parts of a complex num-

ber z ∈ C by Rez and Imz respectively, and the complex conjugate of z by z̄. We
denote by |M | or by det(M) the determinant of matrix M . M(n,m,F) denotes
the set of n×m matrices with entries in the field F. We denote by M(n,F) the set
M(n,n,F). If A ∈M(n,F), then At denotes the transpose of A. We denote by d the
differential. We use Einstein convention i.e. repeated indices are implicitly summed
over. The scalar product of vectors in the Hilbert space H is denoted (·, ·). The set of
vector fields (1-forms) is denoted by D1 (respectively D1). If λ ∈D1 and L ∈D1,
then 〈λ |L〉 denotes their pairing. If Xi, i = 1, . . . ,n are vectors in a vector space V
over the field F, then 〈X1,X2, . . . ,Xn〉F denotes their span over F. If we denote with
Roman capital letteres the Lie groups, then their associated Lie algebras are denoted
with the corresponding lowercase letter.

2. INVARIANT KÄHLER TWO-FORMS ON THE SIEGEL–JACOBI UPPER HALF-PLANE

The next proposition is an improved and enlarged version of [3, Proposition
2.1]. Below (w,z) ∈ (D1,C), (v,u) ∈ (X1,C), and the parameters k and ν come
from representation theory of the Jacobi group: k indexes the positive discrete series
of SU(1,1), 2k ∈N, while ν > 0 indexes the representations of the Heisenberg group
[1].
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Proposition 1. a) Let us consider the Kähler two-form

−iωDJ
1
(w,z)=

2k

P 2
dw∧dw̄+ν

A∧Ā
P

, P :=1−|w|2, A=A(w,z) :=dz+η̄dw, (8)

GJ0 -invariant to the action on the Siegel–Jacobi disk DJ1

SU(1,1)×C 3 (

(
P Q
Q̄ P̄

)
,α)× (w,z) = (

Pw+Q
Q̄w+ P̄

,
z+α− ᾱw
Q̄w+ P̄

). (9)

We have the change of variables (w,z)→ (w,η)

FC: z = η−wη̄, FC−1 : η =
z+ z̄w

P
, (10)

and
FC: A(w,z)→ dη−wdη̄. (11)

The complex two-form

ωDJ
1
(w,η) := FC∗(ωDJ

1
(w,z)) (12)

is not a Kähler two-form.
The symplectic form corresponding to the FC-transform applied to Kähler two-

form (8) is invariant to the action (g,α)× (w,η) = (w1,η1) of GJ0 on C×D1

η1 = P(η+α) +Q(η̄+ ᾱ), (13)

where P,Q appear in (9).
b) Using the partial Cayley transform

Φ−1 : v = i
1 +w

1−w
, u=

z

1−w
, w,z ∈ C, |w|< 1; (14a)

Φ : w =
v− i

v+ i
, z = 2i

u

v+ i
, v,u ∈ C, Imv > 0, (14b)

we obtain

A

(
v− i

v+ i
,

2iu

v+ i

)
=

2i

v+ i
B(v,u),

where
B(v,u) := du− u− ū

v− v̄
dv. (15)

The Kähler two-form of Berndt–Kähler

− iωXJ
1

(v,u) =− 2k

(v̄−v)2
dv∧dv̄+

2ν

i(v̄−v)
B∧ B̄, (16)

is GJ(R)0-invariant to the action on the Siegel–Jacobi upper half-plane X J1(
SL(2,R)×C23

(
a b
c d

)
,α

)
×(v,u)=

(
av+b

cv+d
,
u+nv+m

cv+d

)
, α=m+in. (17)
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We have the change of variables FC1 : (v,u)→ (v,η)

FC1 : 2 iu= (v+ i)η− (v− i)η̄, FC−1
1 : η =

uv̄− ūv+ i(ū−u)

v̄−v
. (18)

c) If

C 3 u := pv+ q, p,q ∈ R, C 3 v := x+ iy, x,y ∈ R, y > 0, (19)

then

B(v,u) = du−pdv, (20)

and

B(v,u) =B(x,y,p,q) = vdp+ dq = (x+ iy)dp+ dq. (21)

d) If we have (18), (19) and we write

C 3 η := χ+ iψ, χ,ψ ∈ R, (22)

then we get the change of coordinates

(x,y,p,q)→ (x,y,χ,ψ) : ψ = p, χ= q, (23)

and

B(v,u) =B(x,y,χ,ψ) = xdψ+ dχ+ iydψ. (24)

We also have the relations

η = q+ ip, q =
1

2
(η+ η̄), p=

1

2i
(η− η̄). (25)

Given (19) and

C 3 u := ξ+ iρ, ξ,ρ ∈ R, (26)

we obtain the change of variables

(x,y,ξ,ρ)→ (x,y,p,q) : ξ = px+ q, ρ= py, (27)

and

B(v,u) = du− ρ
y

dv = d(ξ+ iρ)− ρ
y

d(x+ iy). (28)

If we have (19) and (22), then, with (18), we have the change of coordinates

(x,y,ξ,ρ)→ (x,y,χ,ψ) : ξ = ψx+χ, ρ= ψy. (29)

Proof. a) We determined in [1, 40] the scalar product K(w,z) := (ewz,ewz) of two
Perelomov’s CS states based on the Siegel–Jacobi disk. The associated Kähler po-
tential on DJ1 is

f(w,z) =−2k log(P ) +ν
2|z|2 + w̄z2 +wz̄2

2P
. (30)
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In [1] we applied (2) to the potential (30) and we obtained the Kähler two-form on
DJ1
− iωDJ

1
(w,z) = fzz̄dz∧dz̄+fzw̄dz∧dw̄− f̄zw̄dz̄∧dw+fww̄dw∧dw̄. (31)

The matrix corresponding to the metric associated with the Kähler two-form
(31) reads [40, (5.11)]

h(w,z) =

(
fzz̄ fzw̄
f̄zw̄ fww̄

)
=

(
ν
P ν ηP
ν η̄P

2k
P 2 +ν |η|

2

P

)
. (32)

It is easy to verify that the matrix elements of (32) satisfy the conditions (3) and the
Jacobi disk DJ1 is a Kähler manifold.

If we apply the non-holomorphic FC-transform to the Kähler two-form (8),
then the complex two-form (12) in the variables (w,η) is not a Kähler two-form [71,
Proposition 2, p. 50]. This fact can be directly verified: if we introduce in (32) the
value of η = η(w,z) given in (10), then the conditions (3) for a complex two-form to
be a fundamental two-form are not satisfied.

For the invariance (13) see [14, (6.4)].
b) The Kähler two-form on the Siegel–Jacobi upper half-plane X J1 was deter-

mined from ωDJ
1
(w,z) using the partial Cayley transform in [1, 2, 40]. Note that in

the Berndt–Kähler approach in [47] the Kähler potential (62) is just “guessed”, see
Comment 1.

We have
A∧ Ā
P

=
1

y
B∧ B̄.

For (18) see [40, (3.4)].

Correlating (25) in Proposition 1 with the [1, Comment 6.12], (1), (7) and [40,
Lemma 2], we make the following surprising remark giving a “CS - meaning” to the
S-parameters p,q.
Remark 1. The FC-transform (10) relates Perelomov’s un-normalized CS-vector
ewz with the normalized one ewη

ewη = (ewz,ewz)
− 1

2 ewz, w ∈ D1, z,η ∈ C,

and the S-variables p,q are related to the parameter η by the simple relation

η = q+ ip. (33)

3. THE HEISENBERG GROUP EMBEDDED IN Sp(2,R)

In this section, extracted from [3, Section 3], we summarize the parametriza-
tion of the Heisenberg group used in [6].
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9 Remarks on geometry of extended SJ upper half-plane Article no. 113

The composition law of the 3-dimensional Heisenberg group H1 in (5) is

(λ,µ,κ)(λ′,µ′,κ′) = (λ+λ′,µ+µ′,κ+κ′+λµ′−λ′µ).

As in (5) with M = 12, we denote an element of H1 embedded in Sp(2,R) by

H1 3 g =


1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1

 , g−1 =


1 0 0 −µ
−λ 1 −µ −κ
0 0 1 λ
0 0 0 1

 . (34)

A basis of the Lie algebra h1 =< P,Q,R >R of the Heisenberg group H1 in
the realization (34) in the space M(4,R) consists of the matrices

P =


0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0

 , Q=


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , R=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
which verify the commutation relations

[P,Q] = 2R, [P,R] = [Q,R] = 0. (35)

If we write
H1 3 g(λ,µ,κ) = 14 +λP +µQ +κR,

then, using the formulas (36), see details in [42, Section 3]

g−1dg = Pλp+Qλq +Rλr, dgg−1 = Pρp+Qρq +Rρr, (36)

we find the left-invariant one-forms and vector fields
λp = dλ
λq = dµ
λr = dκ−λdµ+µdλ

;


Lp = ∂λ−µ∂κ
Lq = ∂µ+λ∂κ
Lr = ∂κ

.

4. THE SL(2,R) GROUP EMBEDDED IN Sp(2,R)

In this section we extract from [3, Section 4] the minimum information we need
to understand the embedding of SL(2,R) in the 4-dimensional matrix realization of
Sp(2,R).

An element M ∈ SL(2,R) and its inverse are realized as elements of Sp(2,R)
by the relations

M=

(
a b
c d

)
7→g=


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

∈GJ1 (R), g−1 =


d 0 −b 0
0 1 0 0
−c 0 a 0
0 0 0 1

. (37)
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A basis of the Lie algebra sl(2,R) =<F,G,H >R consists of the matrices inM(4,R)

F =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , G=


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , H =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 .
F, G, H verify the commutation relations (38)

[F,G] =H, [G,H] = 2G, [H,F ] = 2F. (38)

With the representation (37), we have

g−1dg = Fλf +Gλg +Hλh, dgg−1 = Fρf +Gρg +Hρh.

Using the parameterization (37) for SL(2,R), we find
λf = ddb− bdd
λg =−cda+adc
λh = dda− bdc= cdb−add

;


ρf =−bda+adb
ρg = ddc− cdd
ρh = dda− cdb

.

The Iwasawa decomposition M =NAK of an element M as in (37) reads

M =

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cosθ sinθ
−sinθ cosθ

)
, y > 0.

We find

a= y1/2 cosθ−xy−1/2 sinθ, b= y1/2 sinθ+xy−1/2 cosθ, (39a)

c=−y−1/2 sinθ, d= y−1/2 cosθ, (39b)

and

x=
ac+ bd

d2 + c2
, y =

1

d2 + c2
, sinθ =− c√

c2 +d2
, cosθ =

d√
c2 +d2

. (40)

We determined in [3] the left-invariant vector fields Lf ,Lg,Lh on SL(2,R), dual
orthogonal to the left-invariant one-forms λf ,λg,λh. We introduced the left-invariant
one-forms

λ1 :=
√
α(λf +λg), λ2 := 2

√
αλh, λ3 :=

√
β(λf −λg). (41)

In [3] we determined the left-invariant vector fieldsLj such that<λi|Lj >= δij , i, j=
1,2,3, where

L1 :=
1

2
√
α

(Lf +Lg), L2 :=
1

2
√
α
Lh, L3 :=

1

2
√
β

(Lf −Lg). (42)
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5. THE JACOBI GROUP GJ
1 (R) EMBEDDED IN Sp(2,R)

5.1. THE COMPOSITION LAW

The real Jacobi group of index one is the semidirect product of the real three-
dimensional Heisenberg group H1 with SL(2,R). The Lie algebra of the Jacobi
group GJ1 (R) is given by gJ1 (R) =< P,Q,R,F,G,H >R, where the first three ge-
nerators P,Q,R of h1 verify the commutation relations (35), the generators F,G,H
of sl(2,R) verify the commutation relations (38) and the ideal h1 in gJ1 (R) is deter-
mined by the non-zero commutation relations

[P,F ] =Q, [Q,G] = P, [P,H] = P, [H,Q] =Q. (43)

Let g := (M,h)∈GJ1 (R), whereM is as in (37), while h := (X,κ)∈H1, X :=
(λ,µ) ∈ R2 and similarly for g′ := (M ′,h′). The composition law of GJ1 (R) is

gg′ = g1, where M1 =MM ′, X1 =XM ′+X ′, κ1 = κ+κ′+

∣∣∣∣ XM ′X ′

∣∣∣∣ , (44)

i.e.

g1 =

(
aa′+ bc′ ab′+ bd′

ca′+dc′ cb′+dd′

)
,

(λ1,µ1) = (λ′+λa′+µc′,µ′+λb′+µd′),

κ1 = κ+κ′+λq′−µp′.

(45)

The inverse element of g ∈GJ1 (R) is given by

(M,X,κ)−1 = (M−1,−Y,−κ)→ g−1 =


d 0 −b −µ
−p 1 −q −κ
−c 0 a λ
0 0 0 1

 , (46)

where Y was defined in (6) and similarly for Y ′, while g has the general form given
in (5).

Using the notation in [6, p. 9], the EZ-coordinates (EZ - from Eichler & Zagier)
of an element g ∈ GJ1 (R) as in (5) are (x,y,θ,λ,µ,κ), where M is related with
(x,y,θ) by (39), (40).

The S-coordinates (S - from Siegel) of g= (M,h)∈GJ1 (R) are (x,y,θ,p,q,κ),
where (x,y,θ) are expressed as functions of M ∈ SL(2,R) by (39), (40).

5.2. THE ACTION

Let

C 3 τ := x+ iy, C 3 z := pτ + q = ξ+ iρ, x,y,p,q,ξ,ρ ∈ R. (47)
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Let X J1 ≈ X1×R2 be the Siegel–Jacobi upper half-plane, where X1 = {τ ∈ C| y :=
Imτ > 0} is the Siegel upper half-plane, and X̃ J1 ≈ X J1 ×R denotes the extended
Siegel–Jacobi upper half-plane. Simultaneously with the Jacobi group GJ1 (R) con-
sisting of elements (M,X,κ), we considered the group GJ(R)0 of elements (M,X)
[1, 3]. Then:
Lemma 1. a) The action GJ(R)0×X J1 →X J1 is given by

(M,X)× (τ ′,z′) = (τ1,z1), where τ1 =
aτ ′+ b

cτ ′+d
, z1 =

z′+nτ ′+m

cτ ′+d
. (48)

b) If z′ = p′τ ′+ q′, τ ′ = x′+ iy′ as in (47), then the action

(M,X)× (x′,y′,p′, q′) = (x1,y1,p1, q1) (49)

is given by the formula

(p1, q1) = (p,q) + (p′, q′)

(
a b
c d

)−1

= (p+dp′− cq′, q− bp′+aq′). (50)

c) The action GJ1 (R)×X̃ J1 → X̃ J1 is given by

(M,X,κ)× (τ ′,z′,κ′) = (τ1,z1,κ1),

(M,X,κ)× (x′,y′,p′, q′,κ′) = (x1,y1,p1, q1,κ1),

κ1 = κ+κ′+λq′−µp′, (p′, q′) = (
ρ′

y′
, ξ′− x

′

y′
ρ′), (λ,µ) = (p,q)M.

(51)

d) The action GJ1 (R)×GJ1 (R)→GJ1 (R) corresponding to the composition law (44),
or equivalently (45), is

(M,X,κ)× (x′,y′,θ′,p′, q′,κ′) = (x1,y1,θ1,p1, q1,κ1).

5.3. FUNDAMENTAL VECTOR FIELDS

We recall the notion of FVF, see [3, Appendix A.1], [16, p. 122] and [72, p.
51].

Let M =G/H be a homogeneous n-dimensional manifold and let us suppose
that the group G acts transitively on M from the left, G×M →M : g× x = y,
where y = (y1, . . . ,yn)t. Then g(t)×x = y(t), where g(t) = exp(tX), t ∈ R, gen-
erates a curve y(t) in M with y(0) = x and ẏ(0) =X . The fundamental vector field
associated to X ∈ g at x ∈M is defined as

X∗x :=
d

dt
y(t)|t=0 =

d

dt
(exp(tX)×x)|t=0 =

n∑
i=1

(X∗i )x
∂

∂zi
, (X∗i )x =

dyi(t)

dt
|t=0.

With the action given in Lemma 1, we get the FVF on some homogeneous
spaces associated to the real Jacobi group, see Proposition 5.2 in [3], reproduced
below. Only the item g) is new.
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Proposition 2. a) The FVF expressed in the coordinates (τ,z) of the Siegel–Jacobi
upper half-plane X J1 on which the reduced Jacobi group GJ(R)0 acts by (48) are
given by the holomorphic vector fields

F ∗ = ∂τ , G
∗ =−τ2∂τ −zτ∂z, H∗ = 2τ∂τ +z∂z; (52a)

P ∗ = τ∂z, Q
∗ = ∂z, R

∗ = 0. (52b)

b) The real holomorphic FVF corresponding to τ := x+iy, y > 0, z := ξ+iρ in the
variables (x,y,ξ,ρ) are

F ∗ = F ∗1 , G
∗ =G∗1 + (ρy− ξx)∂ξ− (ξy+xρ)∂ρ; (53a)

H∗ =H∗1 + ξ∂ξ +ρ∂ρ, P
∗ = x∂ξ +y∂ρ, Q

∗ = ∂ξ, R
∗ = 0, (53b)

where F ∗1 ,G
∗
1,H

∗
1 are the FVF (54) of the homogeneous manifold X1

F ∗1 =
∂

∂x
, G∗1 = (y2−x2)

∂

∂x
−2xy

∂

∂y
, H∗1 = 2(x

∂

∂x
+y

∂

∂y
) (54)

associated to the generators F,G,H of sl(2,R) corresponding to the action (48) of
SL(2,R) on X1.
c) If we express the FVF in the variables (x,y,p,q), where ξ = px+ q, ρ = py, we
find

F ∗ = F ∗1 −p∂q, G∗ =G∗1− q∂p, H∗ =H∗1 −p∂p+ q∂q; (55a)

P ∗ = ∂p, Q
∗ = ∂q, R

∗ = 0. (55b)

d) If we consider the action (51) ofGJ1 (R) on the points (τ,z,κ) of X̃ J1 , we get instead
of (52) the FVF in the variables (τ,z,p,q,κ)

F ∗ = ∂τ , G
∗ =−τ2∂τ −zτ∂z, H∗ = 2τ∂τ +z∂z; (56a)

P ∗ = τ∂z + q∂κ, Q
∗ = ∂z−p∂κ, R∗ = ∂κ,p=

Im(z)

Im(τ)
, q =

Im(z̄τ)

Im(τ)
. (56b)

e) Instead of (53), we get the FVF in X̃ J1 in the variables (x,y,ξ,ρ,κ)

F ∗ = F ∗1 , G
∗ =G∗1 + (ρy− ξx)∂ξ− (ξy+xρ)∂ρ; (57a)

H∗ =H∗1 + ξ∂ξ +ρ∂ρ, P
∗ = x∂ξ +y∂ρ+ q∂κ, Q

∗ = ∂ξ−p∂κ, R∗ = ∂κ. (57b)

f) Instead of (55), we get the FVF in the variables (x,y,p,q,κ)

F ∗ = F ∗1 −p∂q, G∗ =G∗1− q∂p, H∗ =H∗1 −p∂p+ q∂q; (58a)

P ∗ = ∂p+ q∂k, Q
∗ = ∂q−p∂k, R∗ = ∂κ. (58b)

g) The FVF in the S-variables corresponding to the composition law (44) of the
Jacobi group GJ1 (R) are the same as in (58), except G∗

F ∗ = F ∗1 −p∂q, G∗ =G∗1−y
∂

∂θ
, H∗ =H∗1 −p∂p+ q∂q; (59a)
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P ∗ = ∂p+ q∂k, Q
∗ = ∂q−p∂k, R∗ = ∂κ. (59b)

6. INVARIANT METRICS

Using the formula

g−1dg = λFF +λGG+λHH+λPP +λQQ+λRR,

where g is as in (5) and g−1 as in (46), we calculated in [3] the left-invariant one-
forms on GJ1 (R).

The left-invariant vector fields Lα for the real Jacobi group GJ1 (R) are ortho-
gonal with respect to the invariant one-forms λβ ,

< λβ|Lα >= δαβ, α,β = F,G,H,P,Q,R.

Besides the formulas for λ1,λ2,λ3 defined in (41), we have introduced in [3]
the left-invariant one-forms

λ4 :=
√
γλP , λ5 :=

√
γλQ, λ6 :=

√
δλR,

where λP ,λQ,λR are defined in [3, p. 18]. Also, besides the left-invariant vector
fields L1,L2,L3 defined in (42), we have introduced the left-invariant one forms

L4 :=
1
√
γ
LP , L5 :=

1
√
γ
LQ, L6 :=

1√
δ
LR,

where LP ,LQ,LR are defined in [3, Proposition 5.3].
The vector fields Li, i= 1, . . . ,6 verify the commutations relations

[L1,L2] =−
√
β

α
L3 [L2,L3] =

1

2
√
β
L1 [L3,L1] =

1√
β
L2 (60a)

[L1,L4] =− 1

2
√
α
L5 [L1,L5] =− 1

2
√
α
L4 [L1,L6] = 0 (60b)

[L2,L4] =− 1

2
√
α
L4 [L2,L5] =

1

2
√
α
L5 [L2,L6] = 0 (60c)

[L3,L4] =− 1

2
√
α
L5 [L3,L5] =

1

2
√
β
L4 [L3,L6] = 0 (60d)

[L4,L5] =
2
√
δ

γ
L6 [L4,L6] = 0 [L5,L6] = 0. (60e)

Following [3, Proposition 5.4], we obtain from the Kähler two-form (16) in
Proposition 1 the metric on X J1 in the convention of (4), replacing v → τ, u →
z, k→ 2c1, ν→ c2.

Only (61d) in the next proposition is new.
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Proposition 3. The two-parameter balanced metric on the Siegel–Jacobi upper half-
plane X J1 , left-invariant to the action (48), (49) and (50), respectively (51) of the
reduced group GJ(R)0, is given by the formulas

ds2
XJ

1
(τ,z) =−c1

dτdτ̄

(τ − τ̄)2
+

2ic2

τ − τ̄
(dz−pdτ)× cc, p=

z− z̄
τ − τ̄

, (61a)

ds2
XJ

1
(x,y,p,q)=c1

dx2+dy2

4y2
+
c2

y

[
(x2 +y2)dp2 + dq2 + 2xdpdq

]
(61b)

= c1
dx2 + dy2

4y2
+c2

x2+y2

y

[
(dp+

x

x2+y2
dq)2+(

ydq

x2+y2
)2

]
,

ds2
XJ

1
(x,y,ξ,ρ) = c1

dx2 + dy2

4y2
+ (61c)

+
c2

y

[
dξ2 + dρ2 + (

ρ

y
)2(dx2 + dy2)−2

ρ

y
(dxdξ+ dydρ)

]
,

ds2
XJ

1
(x,y,χ,ψ) = c1

dx2 + dy2

4y2
+
c2

y

[
(xdψ+ dχ)2 +y2dψ2

]
. (61d)

Proof. In the expression (15) of B(v,u), v ∈ X1, u ∈ C, we introduce the parametri-
zations of v,u appearing in Proposition 1 and then we pass from the Kähler two-form
(16) of Kähler–Berndt to the associated Riemannian metric with the standard formula
(4).

In Proposition 1 a) we have obtained from the Kähler two-form ωDJ
1

(8) the
Kähler two-form ωXJ

1
(16), from which we get the metric (61a) with formula (4).

In formula (20) we introduce (19) and we get (21). With (4) we find (61b).
In formula (20) we introduce (26) and with (27), we get (28). With (4), we find

(61c).
In (61c) we introduce (29), or in (61b) we introduce (23), and we get (61d).
Also, if in (21) we take into consideration (23), we get (24). We apply (4) to

get (61d).

Below we reproduce the Comment 5.5 in [3] with some completions:
Comment 1. Berndt [47, p. 8] considered the closed two-form Ω = dd̄f ′ of Siegel–
Jacobi upper half-plane, GJ(R)0-invariant to the action (48), obtained from the
Kähler potential

f ′(τ,z) = c1 log(τ − τ̄)− ic2
(z− z̄)2

τ − τ̄
, c1, c2 > 0. (62)

Formula (62) is presented by Berndt as “communicated to the author by Kähler”.
Also in [47, p. 8] is given our equation (61a), while our (61b) corrects two printing
errors in Berndt’s paper.
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Later, in [49, § 36], reproduced also in [50], Kähler argues how to choose the
potential as in (62), see also [49, (9) § 37], where c1 =−k

2 , c2 = iνπ, i.e.

f ′(τ,z) =−k
2

log
τ − τ̄

2i
− iπν

(z− z̄)2

τ − τ̄
. (63)

Once the Kähler potential (63) is known, we apply the recipe (2b)

− iωXJ
1

(τ,z) = f ′τ τ̄dτ ∧dτ̄ +f ′τ z̄dτ ∧dz̄− f̄ ′τ z̄dτ̄ ∧dz+f ′zz̄dz∧dz̄.

The metric (8) in [49] differs from the metric (61) by a factor of two, since the
Hermitian metric used by Kähler is ds2 = 2gij̄dzi⊗dz̄j . If in (63) we take k/2→ k,
we have

f ′τ =−k 1

τ − τ̄
+ iπν

(z− z̄)2

(τ − τ̄)2
, f ′τ τ̄ =−k 1

(τ − τ̄)2
+ 2iπν

(z− z̄)2

(τ − τ̄)3
,

f ′τ z̄ =−2iπν
z− z̄

(τ − τ̄)2
, f ′z =−2iπν

z− z̄
τ − τ̄

, f ′zz̄ = 2iπν
1

τ − τ̄
,

and we get (16). Relation (16) has been obtained by Berndt [48, p. 30], where
the denominator of the first term is misprinted as v− v̄ (or τ − τ̄ in our notations).
Equation (61b) appears also in [48, p. 30] and [6, p. 62].

We also recall that in [1, (9.20)] we observed that the Kähler potential (63)
should correspond to a reproducing kernel

K(τ,z) = y−
k
2 exp(2πp2y). (65)

In [5, (4.3)], see also [5, Proposition 4.1], we have presented a generalization of
(65) for X Jn , obtained by Takase in [22, §9].

Yang calculated in [10] the metric on X Jn , invariant to the action of GJn(R)0.
The equivalence of the metric of Yang with the metric obtained via CS onDJn and then
transported to X Jn via partial Cayley transform is underlined in [14]. In particular,
the metric (61c) appears in [10, p. 99] for the particular values c1 = 1, c2 = 4. See
also [9, 11, 12].

We recall that a vector field X on a Riemannian manifold (M,g) is called
an infinitesimal isometry or a Killing vector field if the local 1-parameter group of
local transformations by X in a neighbourhood of each point of M consists of local
isometries [72, Proposition 3.2], i.e.

LXg = 0, X ∈D1(M), (66)

where LX is the Lie derivative on M . The condition (66) for a vector field (67)

X =
n∑
i=1

Xi ∂

∂xi
(67)
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to be a Killing vector field amounts to its contravariant components to verify the
equations [3, A.6]

Xµ∂µgλχ+gµχ∂λX
µ+gλµ∂χX

µ = 0, λ,χ,µ= 1, . . . ,dimM = n. (68)

It is well known that the fundamental vector field X∗ on a Riemannian homo-
geneous manifold is a Killing vector, see e.g. [73, p 4], [74, Proposition 2.2, p. 139]
or [3, Remark A.4].

The next proposition completes [3, Proposition 5.6].
Proposition 4. The three-parameter metric on the extended Siegel–Jacobi upper half
-plane X̃ J1 , in the S-coordinates (x,y,p,q,κ)

ds2
X̃J

1
= ds2

XJ
1

(x,y,p,q) +λ2
6(p,q,κ) (69a)

=
α

y2
(dx2 + dy2) + [

γ

y
(x2 +y2) + δq2]dp2 + (

γ

y
+ δp2)dq2 + δdκ2

+ 2(γ
x

y
− δpq)dpdq+ 2δ(qdpdκ−pdqdκ) (69b)

is left-invariant with respect to the action of the Jacobi groupGJ1 (R) given in Lemma 1.
If

X =X1∂x+X2∂y +X3∂p+X4∂q +X5∂κ ∈ gJ1 (R)	< L3 >,

then the fundamental vector fields (59a) verify the following Killing equations (68)
with respect to the metric (69), invariant to the action (51):

−X2 +y∂xX
1 = 0,

∂xX
2 +∂yX

1 = 0,

(γ
x2 +y2

y
+ δq2)∂xX

3 + δq∂xX
5 + (γ

x

y
− δpq)δxX4 = 0,

(γ
x

y
− δpq)∂xX3 + (

γ

y
+ δp2)∂xX

4 +
α

y2
∂qX

2 = 0,

δpq∂xX
3− δp∂xX4 + δ∂xX

5 +
α

y2
∂κX

1 = 0,

−X2 +y∂yX
2 = 0,

(γ
x

y
− δpq)∂yX4 + (γ

x2 +y2

y
+ δq2)∂yX

3 + δq∂κX
5 +

α

y2
∂pX

2 = 0,

(γ
x

y
− δpq)∂yX3 + (

γ

y
+ δp2)∂yX

4− δp∂yX5 +
α

y2
∂qX

2 = 0,

δq∂yX
3− δp∂yX4 + δ∂yX

5 +
α

y2
∂kX

1 = 0,

2γ
x

y
X1 +γ(1− x

2

y2
)X2 + 2δqX4 + 2(γ

x2 +y2

y
+ δq2)∂pX

3 + 2(γ
x

y
− δpq)∂pX4
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+ 2δq∂pX
5 = 0,

γ
x

y
(yX1−xX2)−δ(qX3+pX4)+2(γ

x

y
−δpq)∂pX3 + (

γ

y
+ δp2)∂pX

4− δpδp∂pX5

+γ(
x2 +y2

y
+ δq2)∂qX

3 + (γ
x

y
− δpq)∂qX4 + δq∂qX

5 = 0,

δX4 + δq∂pX
3− δp∂pX4 + δ∂pX

5 + (γ
x2 +y2

y
+ δq2)∂κX

3 + (γ
x

y
− δpq)∂κX4

+ δq∂kX
5 = 0,

− γ

y2
X2 + 2δpX3 + 2(γ

x

y
− δpq)δqX3 + 2(

γ

y
+ δp2)∂qX

4−2δpq∂qX
5 = 0,

δX3+δq∂qX
3−δp∂qX4+δ∂qX

5+(γ
x

y
−δpq)∂κX3+(

γ

y
+ δp2)∂κX

4−δp∂κX5 = 0,

q∂κX
3−p∂kX4 +∂kX

5 = 0.

The next proposition is a completion of [3, Theorem 5.7].
Proposition 5. The four-parameter left-invariant metric on the real Jacobi group
GJ1 (R) in the S-coordinates (x,y,θ,p,q,κ) is

ds2
GJ

1 (R)
=

6∑
i=1

λ2
i

= α
dx2 + dy2

y2
+β(

dx

y
+ 2dθ)2

+
γ

y
[dq2 + (x2 +y2)dp2 + 2xdpdq] + δ(dκ−pdq+ qdp)2.

(70)

We have < λi|Lj >= δij , i, j = 1, . . . ,6, where the vector fields Li, i= 1, . . . ,6
verify the commutation relations (60) and are orthonormal with respect to the metric
(70).

If

X =X1∂x+X2∂y +X3∂θ +X4∂p+X5∂q +X6∂κ ∈ gJ1 (R),

then the fundamental vector fields (59) in the S-variables, associated to the gene-
rators F,G,H,P,Q,R, corresponding to the left action (44) of the Jacobi group on
himself are solution of the following Killing equations associated to the invariant
metric (70)

− (α+β)X2 + (α+β)y∂xX
1 + 2βy2∂xX

3 = 0,

α∂xX
2 + (α+β)∂yX

1 + 2βy∂yX
3 = 0,

−2βX2 + 2βy∂xX
1 + 4βy2∂xX

3 + (α+β)∂θX
1 + 2βy∂θX

3 = 0,
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(γ
x2 +y2

y
+ δq2)∂xX

4+(γ
x

y
−δpq)∂xX5+δq∂xX

6+
α+β

y2
∂pX

1+2
β

y
∂pX

3 =0,

(γ
x

y
− δpq)∂xX4 + (

γ

y
+ δp2)∂xX

6− δp∂xX6 +
α+β

y2
∂qX

1 + 2
β

y
∂qX

3 = 0,

δq∂xX
4− δp∂xX5 + δ∂xX

6 +
α+β

y2
∂κX

3 + 2
β

y
∂κX

3 = 0,

−X2 +y∂yX
2 = 0,

2
β

y
∂yX

1 + 4β∂yX
3 +

α

y2
∂θX

2 = 0,

(γ
x2 +y2

y
+ δq2)∂yX

4 + (γ
x

y
− δpq)∂yX5 + δq∂yX

6 +
α

y2
∂pX

2 = 0,

(γ
x

y
− δpq)∂yX4 + (

γ

y
+ δp2)∂yX

5− δp∂yX6 +
α

y2
∂qX

2 = 0,

δq∂yX
4− δp∂yX5 + δ∂yX

6 +
α

y2
∂κX

2 = 0,

∂θX
1 + 2y∂θX

3 = 0,

(γ
x2 +y2

y
+ δq2)∂θX

4 + (γ
x

y
− δpq)∂θX5 + δq∂θX

6 + 2
β

y
∂pX

1 + 4β∂pX
6 = 0,

(γ
x

y
− δpq)∂θX4 + (

γ

y
+ δp2)∂θX

5− δp∂θX6 + 2
β

y
∂qX

3 + 4β∂qX
3 = 0,

δq∂θX
4 + (

γ

y
− δp)∂θX5 + δ∂θX

6 + 4β∂κX
3 + 2

β

y
∂κX

1 = 0,

2γ
x

y
X1 +γ(1− x

2

y2
)X2 + 2δqX5 + 2(γ

x2 +y2

y
+ δq2)∂pX

4

+ 2(γ
x

y
− δpq)∂pX4 + 2δq∂pX

6 = 0,

γ

y
X1−γ x

y2
X2− δ(qX4 +pX5) + (γ

x

y
− δpq)∂pX4 + (

γ

y
+ δp2)∂pX

5− δp∂pX6

+ (γ
x2 +y2

y
+ δq2)∂qX

4 + (γ
x

y
− δpq)∂qX5 + δq∂qX

6 = 0,

δq∂pX
4−δp∂pX5+δ∂pX

6+(γ
x2 +y2

y
+δq2)∂κX

4+(γ
x

y
−δpq)∂κX5+δq∂κX

6=0,

− γ

y2
X2 + 2δpX4 + 2(γ

x

y
− δpq)∂qX4 + 2(

γ

y
+ δp2)∂qX

4−2δp∂qX
6 = 0,

−δX4+δq∂qX
4−δp∂qX5+δ∂qX

6+(γ
x

y
−δpκ)∂κX

4+(
γ

y
+δp2)∂κX

5−δp∂κX6=0,

q∂κX
6−p∂κX5 +∂κX

6 = 0.
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7. NATURAL REDUCTIVITY AND GEODESIC VECTORS ON X̃J
1

We briefly recall the notions of natural reductivity and geodesic vectors. More
references and details are given in [3, Appendix A].

In accord with Nomizu [67], a homogeneous space M = G/H is reductive if
the Lie algebra g of G may be decomposed into a vector space direct sum of the Lie
algebra h of H and an Ad(H)-invariant subspace m, that is

g = h⊕m, h∩m = ∅, (71a)

Ad(H)m⊂m. (71b)
Condition (71b) implies

[h,m]⊂m, (71c)
and conversely, if H is connected, then (71c) implies (71b).

If the Lie algebra g and its subalgebra h associated with the homogeneous
manifold M = G/H satisfy (71a), then a necessary and sufficient condition for M
to be a locally symmetric space is

[h,h]⊂ h, [h,m]⊂m, [m,m]⊂ h. (72)

If M is a complete, simply connected Riemannian locally symmetric space,
then M is a Riemannian globally symmetric space [16, Theorem 5.6, p. 232].

We recall [75, Theorem 5.4], [3, Appendix A.4], [73, Proposition 1, p. 5], [43,
Ch X, §3], [76, Theorem 6.2, p. 58].

Let (M,g) be a homogeneous Riemannian manifold. Then (M,g) is a naturally
reductive Riemannian homogeneous space if and only if there exists a connected
Lie subgroup G of I(M) acting transitively and effectively on M and a reductive
decomposition (71a) such that one of the following equivalent statements holds:

(i) the following relation is verified

g([X1,X3]m,X2) +g(X1, [X3,X2]m) = 0, ∀X1,X2,X3 ∈m; (73)

(ii) (∗) every geodesic in M is the orbit of a one-parameter subgroup of I(M) gene-
rated by some X ∈m.

The natural reductivity is a special case of spaces with a more general property
than (∗), see [3, Appendix A.7], [68]:
(∗∗) Each geodesic of (M =G/H,g) is an orbit of a one parameter group of isome-
tries exp(tZ), Z ∈ g.

A vectorX ∈ g\{0} is called a geodesic vector if the curve γ(t) = exp(tX)(p)
is a geodesic, cf. [68]. Riemannian homogeneous spaces with property (**) are
called g. o. spaces. (g. o. = geodesics are orbits). All naturally reductive spaces are
g. o. spaces.
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Kowalski and Vanhacke [68] have proved that the condition to have a geodesic
vector is expressed in the:

Geodesic Lemma: On homogeneous Riemannian manifolds M =G/H a vec-
tor X ∈ g\{0} is geodesic if and only if

B([X,Y ]m,Xm) = 0,∀Y ∈m. (74)

It is known [68] that: Every simply connected Riemannian g. o. space (G/H,g)
of dimension n≤ 5 is a naturally reductive Riemannian manifold.

The next theorem is a completion of [3, Proposition 5.8]
Theorem 1. a) The Siegel–Jacobi upper half-plane, realized as homogeneous Rie-
mannian manifold (X J1 =

GJ
1 (R)

SO(2)×R ,gXJ
1

), is a reductive, non-symmetric manifold, not
naturally reductive with respect to the balanced metric (61b).

The Siegel–Jacobi upper half-plane X J1 is not a g. o. space with respect to the
balanced metric.
b) If

gJ1 (R) 3X = aL1 + bL2 + cL3 +dL4 +eL5 +fL6, (75)
then the geodesic vectors of the homogeneous manifold X J1 have one of the following
expressions given in Table 1

Table 1

Components of the geodesic vectors (75) on XJ
1 .

N a b c d e f
1 0 0 c 0 0 f

2 a b 0 0 0 f

3 rc 0 c ±rc 0 f

4 a 0 −a 0 ε
√
ra f

5 ε1ε2
1−r√
r
e ε1e − ε1ε2√

r
e ε2

√
re e f

where r =
√

α
β , ε21 = ε22 = ε2 = 1.

c) The extended Siegel–Jacobi upper half-plane, realized as homogeneous Rieman-
nian manifold (X̃ J1 =

GJ
1 (R)

SO(2) ,gX̃J
1

), is a reductive, non-symmetric manifold, non-
naturally reductive with respect to the metric (69).

The Siegel–Jacobi upper half-plane X̃ J1 is not a g. o. space with respect to the
invariant metric (69).
d) If we take X ∈ gJ1 as in (75), then the geodesic vectors on the extended Siegel–
Jacobi manifold X̃ J1 are given in Table 2 for

r > R3 = [
1

2
+

1

6
(
31

3
)
1
2 ]

1
3 + [

1

2
− 1

6
(
31

3
)
1
2 ]

1
3 ≈ 0.6823 . . . .
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Table 2

Components of the geodesic vectors (75) on X̃J
1 .

N a b c d e f

1 ε1ε2(1−r)
√

1+r2

rF2
e ε2

√
F3

r(r2+1)
e −ε1ε2r

√
r

(r2+1)F2
e ε1

√
F3
F2
e e 6=0 f

2 ε
√

r
r2+2

e 0 −ε
√

r
r2+2

e d= 0 e 6=0 f

3 rc 0 c 6= 0 ε
√

2+r2c 0 f

4 0 0 c 0 0 f

5 0 b 0 0 0 f

6 a 0 0 0 0 f

The polynomials F2,F3 are defined in (76)

F3(r) = r3 + r−1, F2(r) = r2− r+ 1, r ∈ R. (76)

Proof. a) This part has been proved in [3].
b) This part was also proved in [3]. Here we give more details which are used

in the next parts of the theorem.
To find the geodesic vectors on the Siegel–Jacobi upper half-planeX J1 , we look

for the solution (75) that verifies the condition (74).
Taking

m 3 Y = a1L
1 + b1L

2 +d1L
4 +e1L

5,

the condition (74) becomes

a1(
bc√
β

+
ed√
α

) +
b1
2

[− ac√
β

+
1√
α

(d2−e2)]

− d1

2
√
α

(bd+ec+ae) +
e1

2
[
cd√
β

+
1√
α

(be−ad)] = 0,

and must be satisfied for every values of a1, b1,d1,e1, i.e. the coefficients of the
geodesic vector (75) are solutions to the system of algebraic equations

rbc+de= 0, (77a)

−rac+d2−e2 = 0, (77b)

bd+e(a+ c) = 0, (77c)

rcd+ be−ad= 0. (77d)

Now suppose that we have de 6= 0. We write (77c) and (77d) as

a+ c=−bd
e
, (78a)

−a+ rc=−be
d
. (78b)
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We find from (78)

a=
b

de

e2− rd2

1 + r
, c=− b

ed

d2 +e2

1 + r
. (79)

Introducing a and c from (79) into (77a) and (77b), we find the compatibility condi-
tion

d2 = re2. (80)
If ed 6= 0, we get the first line in Table 1. The other situations are contained in the
next lines of Table 1.

c) We consider

m =< F,G,H,P,Q >, h =<R>,

and with the commutation relations (35), (38), (43), we get [h,m]⊂m, but [m,m]* h.
This contradicts relation (72) satisfied by a symmetric manifold.

In order to verify the natural reductivity of the extended Siegel upper half-
plane, we have to check relation (73). We take

Xi = aiL
1 + biL

2 + ciL
3 +diL

4 +eiL
5 ⊂m, i= 1,2,3. (81)

Let us introduce the following notation

γ :=
1√
β
−
√
β

α
, ζ :=

√
β

α
− 1

2
√
β
.

Then (73) reads

γ(c1b2− b1c2) = 0,
ζ(c1a2−a1c2) = 0,

3√
β

(b1a2−a1b2) + ( 1√
α

+ 1√
β

)(d1e2−e1d2) = 0,

−a1e2− b1d2− c1e2 +d1b2 +e1(a2 + c2) = 0,
d1a2−a1d2+b1e2−e1b2√

α
+ c1d2−d1c2√

β
= 0.

(82)

We write the system of algebraic equations (82) as
5∑
j=1

Aijxj = 0, i= 1, . . . ,5, (83)

where x := (x1, . . . ,x5) = (a1, . . . ,e1).
Now we calculate matrix A := {Aij}i,j=1,...,5 from (82)

A=


0 γc2 −γb2 0 0
−ζc2 0 ζa2 0 0

− 3b2√
β

3a2√
β

0 ( 1√
α

+ 1√
β

)e2 −( 1√
α

+ 1√
β

)d2

−e2 −d2 −e2 b2 a2 + c2

− d2√
α

e2√
α

d2√
β

a2√
α
− c2√

β
− b2√

α

 (84)
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and, computing its determinant, we find detA= 0 for any X2 ∈m. This means that
we can find X1 ∈ m such that (73) be satisfied for any X2,X3 ∈ m, and thus X̃ J1 is
not a naturally reductive space with respect to the metric (69).

d) The condition for a vector X (75) to be a geodesic vector on the extended
Siegel–Jacobi upper half-plane is to verify (74). If we take

m 3 Y = a1L
1 + b1L

2 + c1L
3 +d1L

4 +e1L
5,

with the commutation relations (60), we find

[X,Y ] =− 1

2
√
β

(cb1− c1b)L
1 +

1√
β

(ca1− c1a)L2−
√
β

α
(ab1−a1b)L

3

+ [− 1

2
√
α

(ae1−a1e)−
1

2
√
α

(bd1−db1) +
1

2
√
β

(ce1− c1e)]L
4

+ [− 1

2
√
α

(ad1−da1) +
1

2
√
α

(be1− b1e)−
1

2
√
α

(cd1− c1d)]L5

+ 2(de1−ed1)

√
δ

γ
L6.

Condition (74) requires the components of the geodesic vectorX to verify the system
of algebraic equations:

(r+
1

r
)bc+de= 0, (85a)

−(r+
2

r
)ac+d2−e2 = 0, (85b)

−rab+ (1− r)de= 0, (85c)

bd+e(a+ c) = 0, (85d)

rcd+ be−ad= 0. (85e)

From (85d) and (85e) we get for a and c the expressions given in (79), which we
introduce in (85a) and obtain

b2

d2e2
=
r(r+ 1)

r2 + 1

1

d2 +e2
. (86)

We also introduce in (85c) the expressions for a and c given in (79) and we get

b2

d2e2
=

1− r2

r

1

e2− rd2
. (87)

The compatibility of equations (86) and (87) imposes the following restriction:

d2

e2
=
F3(r)

F2(r)
. (88)
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The real root R3 of equation F3(r) = 0 is obtained with Cardano’s formula as

R3 = [
1

2
+

1

6
(
31

3
)
1
2 ]

1
3 + [

1

2
− 1

6
(
31

3
)
1
2 ]

1
3 ≈ 0.6823 . . . .

Introducing (79) in (85b), we come back to condition (88).

In conclusion,
Comment 2. In this paper we have investigated some geometric properties of the
extended Siegel–Jacobi upper half-plane introduced in [3]. If the invariant metric
on the four dimensional manifold X J1 can be obtained with the CS methods, the
invariant metric on the five dimensional manifold X̃ J1 can be obtained only with
Cartan’s moving frame method. Both manifolds X J1 and X̃ J1 are reductive, non-
symmetric, non-naturally reductive manifolds and consequently are not g. o. spaces.

Acknowledgements. This research was conducted in the framework of the ANCS project pro-
gram PN 19 06 01 01/2019.
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